
1 Principal Component Analysis (PCA)

Problem:

Сrumbs on the floor: Each data point
is represented by three coordinates 𝑥, 𝑦, 𝑧,
but 𝑧 is always 0. Therefore, the data can
be represented by just two coordinates:

𝒇 =
(
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𝑦
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))
) →

𝐴
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𝑦) →
𝐵
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(
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))
).

It is straightforward to find the linear
transformations 𝐴 and 𝐵:
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NB: In the example above:

✴ The last column of 𝐴 is arbitrary, so the
choice of transformations is not unique.

✴ 𝐴 and 𝐵 are related: 𝒇 = 𝐵𝐴𝒇 , thus
𝐵𝐴 = 𝐼 .

✴ Since 𝐴 and 𝐵 are non-square, they are
non-invertible, so 𝐴 = 𝐵−1 does not
hold.

✴ Principal Component Analysis (PCA) is a feature transformation method that converts
the original features 𝒇 into a new set of transformed features 𝒑, ensuring their linear inde-
pendence:

𝒇 =
(
((
(𝑓1

⋮
𝑓𝑘)

))
) → 𝒑 =

(
((
(𝑝1

⋮
𝑝𝑚)

))
), (1)

If the original features are linearly dependent, the data resides in a lower-dimensional
space, meaning 𝑚 < 𝑘. For clarity, we will assume 𝑚 < 𝑘 explicitly.

✴ The new representation 𝑝1, …, 𝑝𝑚 is constructed as a linear combination of the original
features 𝑓1, …, 𝑓𝑘:

𝑝𝑠 = ∑
𝑘

𝑗=1
𝛼𝑠,𝑗 ⋅ 𝑓𝑗, (2)

the coefficients 𝛼𝑠,𝑗 form the matrix 𝐴, which defines the linear transformation from 𝒇 to
𝒑.

✴ The new, usually lower-dimensional, representation 𝒑 must still be informative. This is
achieved by ensuring that 𝒑 can approximately restore the original features 𝒇 linearly and
with minimal error:

𝑓𝑗 = ∑
𝑚

𝑠=1
𝛽𝑗,𝑠 ⋅ 𝑝𝑠 ≈ 𝑓𝑗, (3)

the coefficients 𝛽𝑗,𝑠 form the matrix 𝐵, which defines the linear transformation from 𝒑
back to 𝒇 .

✴ The objective of PCA is to minimize the reconstruction error 𝒇 − 𝒇 by finding the optimal
linear transformations 𝐴 : 𝒇 → 𝒑 and 𝐵 : 𝒑 → 𝒇 :

𝑅 = ∑
𝒙∈𝑋ℓ

‖𝒇 − 𝒇‖
2

= ∑
𝒙∈𝑋ℓ

‖𝐵𝐴𝒇 − 𝒇‖2 → min
𝐴,𝐵

. (4)

Сrumbs on the table.: Now, the third
coordinate equals the table height ℎ = 1:

(
((
(𝑥

𝑦
1)
))
) →

𝐴
(𝑥

𝑦), (𝑥
𝑦) →

𝐵

(
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(𝑥

𝑦
1)
))
)

Here, 𝐴 is the same as before, but no 𝐵
can restore the original vector exactly.

Formally, if 𝐵 exists, we could write the
system of equations:

(
((
((

𝛽1,1
𝛽2,1
𝛽3,1

𝛽1,2
𝛽2,2
𝛽3,2)

))
))(𝑥

𝑦) =
(
((
(𝑥

𝑦
1)
))
) ⇒

{{
{
{{1𝑥 + 0𝑦 = 𝑥

0𝑥 + 1𝑦 = 𝑦
𝛽3,1𝑥 + 𝛽3,2𝑦 = 1

.

✴ The coefficients in the first two equa-
tions are determined by the identities
𝑥 = 𝑥 and 𝑦 = 𝑦.

✴ The third equation cannot yield 1 for
all 𝑥, 𝑦 since it lacks a bias term.

Approximate solution.: In the example
above, we could find 𝐵 as the pseudoin-
verse 𝐵 = 𝐴+ = (𝐴𝖳 𝐴)−1𝐴𝖳 , but:

✴ The original vector will only be restored
approximately, so 𝐴𝐵 ≈ 𝐼 .

✴ Since the choice of 𝐴 is arbitrary, the
choice of 𝐵 is also arbitrary. This free-
dom allows us to impose additional con-
straints on the transformations.

Linear Maps: Matrices 𝐴 (dimension reducer) and 𝐵 (dimension adder) are linear maps that
work oppositely: 𝐴 reduces the dimension of the original features 𝒇 to the dimension of the
principal components 𝒑, and 𝐵 restores, as closely as possible, the original features from the
principal components.

𝒇 =
(
((
(𝑓1

⋮
𝑓𝑘)

))
) →

𝐴
𝒑 =

(
((
(𝑝1

⋮
𝑝𝑚)

))
) →

𝐵
𝒇 =

(
((
((

𝑓1
⋮

𝑓𝑘)
))
)) (5)

This can be written as:

𝒑 = 𝐴𝒇, 𝒇 = 𝐵𝒑. (6)

Matrix Formulation: The feature matrix 𝐹  and the principal component matrix 𝑃  are formed
by stacking the row vectors 𝒇𝖳 = (𝑓1, …, 𝑓𝑘) and 𝒑𝖳 = (𝑝1, …, 𝑝𝑚):

𝐹 ≔

(
((
((

𝒇𝖳 
1
⋮

𝒇𝖳 
ℓ )

))
)), 𝑃 ≔

(
((
((

𝒑𝖳 
1
⋮

𝒑𝖳 
ℓ )

))
)) (7)

In matrix form, the linear maps 𝐴 and 𝐵 are applied as follows:

𝑃𝖳 = 𝐴𝐹𝖳 , 𝐹𝖳 = 𝐵𝑃𝖳 , (8)

or equivalently, by transposing:



𝑃 = 𝐹𝐴𝖳 , 𝐹 = 𝑃𝐵𝖳 . (9)

Substituting 𝑃  into 𝐹  yields the following equation:

𝐹 = 𝐹𝐴𝖳 𝐵𝖳 = 𝐹(𝐴𝐵)𝖳 , (10)

The approximation 𝐹  equals 𝐹  exactly if 𝐴𝐵 = 𝐼 . Ideally, 𝐴 would equal 𝐵−1, but in general,
𝐴 and 𝐵 are non-square and therefore non-invertible.

Pseudoinverse matrix: 𝐴𝐵 = 𝐼 holds if 𝐵 is the pseudoinverse of 𝐴:
𝐵𝐴 = 𝐴+𝐴 = (𝐴𝖳 𝐴)−1(𝐴𝖳 𝐴) = 𝐼𝐵 = 𝐴+ = (𝐴𝖳 𝐴)−1𝐴𝖳 . (11)

𝐴+ is exact if 𝐴 has full rank, but in general, it does not, so the solution is only approximate:

𝐴𝐵 ≈ 𝐼. (12)

Geometric Interpretation:

Basis Transition Matrix.: If in vector
space 𝑉 , there are two bases: the old
one 𝒪 : 𝝎1, …, 𝝎𝑛 and the new one 𝒩 :
𝝂1, …, 𝝂𝑛, the vectors of the new basis can
be represented as linear combinations of
the old basis vectors:

{{
{
{{𝝂1 = 𝛼1,1𝝎1 + … + 𝛼1,𝑛𝝎𝑛

⋮
𝝂𝑛 = 𝛼𝑛,1𝝎1 + … + 𝛼𝑛,𝑛𝝎𝑛

The coefficients 𝛼𝑠,𝑗 are the coordinates
of the new basis vectors in the coordi-
nate system of the old basis. These coeffi-
cients form the basis transition matrix (by
columns!):

𝐴 =

(
((
((

𝛼1,1
⋮

𝛼1,𝑛

…
⋱
…

𝛼𝑛,1
⋮

𝛼𝑛,𝑛)
))
))

This matrix transforms coordinates be-
tween bases:

{𝝂1}𝒪 =
(
((
(𝛼1,1

⋮
𝛼1,𝑛)

))
)

𝒪

= 𝐴
(
((
(1

0
⋮)
))
)

𝒩

= 𝐴{𝝂1}𝒩

{𝒗}𝒪 = 𝐴{𝒗}𝒩, {𝒗}𝒩 = 𝐴−1{𝒗}𝒪

 Matrices 𝐴 and 𝐵 resemble transition matrices between bases:

✴ 𝐴 transforms vectors from the original basis of features 𝑓1, …, 𝑓𝑘 into a new space with the
basis of principal components 𝑝1, …, 𝑝𝑚. However, since these bases are in different dimen-
sional spaces, this is only an analogy.

✴ 𝐵 performs the reverse transformation, converting from the principal component basis back
to the original basis (approximately).

Since 𝐴 and 𝐵 are related by the pseudoinverse operation and perform inverse transforma-
tions, we can focus on one of the matrices. Let it be 𝐵.

The basis transition matrix stores the vectors of the new basis in the coordinates of the old
basis. As the linear map 𝐵 transforms principal components into the original features (ap-
proximately):

𝒇 ≈ 𝐵𝒑, (13)

it acts similarly to a basis transition matrix from 𝒇 to 𝒑, storing the orthogonal basis of prin-
cipal axes in the coordinates of the original space.

The choice of matrix 𝐵 is flexible, allowing
us to impose additional constraints. For
example, we can require that 𝐵𝑇 𝐵 be di-
agonal or even the identity matrix:

𝐵𝑇 𝐵 = (1
0

0
1

0
0)

(
((
(1

0
0

0
1
0)
))
) = (1

0
0
1)

Any basis consists of linearly independent, or orthogonal, vectors, meaning that 𝐵 stores or-
thogonal vectors, and 𝐵𝖳 𝐵 = Λ is diagonal.

Since the choice of 𝐵 is not unique, we can use this freedom to demand that 𝐵𝖳 𝐵 be not just
diagonal Λ, but the identity matrix 𝐼 :

∃𝐵 : 𝐵𝖳 𝐵 = 𝐼, (14)

This implies that 𝐵 stores not just orthogonal vectors but an orthonormal basis of principal
components.

Risk Minimization: The objective of PCA is to minimize the restoration error. In this nota-
tion, the empirical risk depends on 𝐴 and 𝐵:

𝑅 := ‖𝐹 − 𝐹‖
2

= ‖𝐹𝐴𝖳 𝐵𝖳 − 𝐹‖2 → min
𝐴,𝐵

.
(15)

We can reformulate the objective in terms of the new coordinates 𝑃  and the transition matrix
𝐵 by substituting 𝑃 = 𝐹𝐴𝖳 , which at least reduces one matrix multiplication:

𝑅 = ‖𝑃𝐵𝖳 − 𝐹‖2 → min
𝑃,𝐵

. (16)

By differentiating 𝑅 with respect to 𝑃  and 𝐵, we can find the values of 𝑃  and 𝐵 at the
extremum:



𝜕𝑅
𝜕𝑃

= 2(𝑃𝐵𝖳 − 𝐹)𝐵 = 0

⇓

𝑃 = 𝐹𝐵(𝐵𝖳 𝐵)−1

(17)

𝜕𝑅
𝜕𝐵

= 2𝑃𝖳 (𝑃𝐵𝖳 − 𝐹) = 0

⇓

𝐵𝖳 = (𝑃𝖳 𝑃)−1𝑃𝖳 𝐹

(18)

𝐵 = 𝐹𝖳 𝑃((𝑃𝖳 𝑃)−1)
𝖳 

= 𝐹𝖳 𝑃((𝑃𝖳 𝑃)𝖳 )
−1

= 𝐹𝖳 𝑃(𝑃𝖳 𝑃)−1

(19)

𝑆 = 𝑃𝖳 𝑃  is symmetric, i.e. 𝑆𝑇 = 𝑆The objective 𝑅 depends only on the product 𝑃𝐵𝑇 , which can result from multiplying any
number of different pairs of matrices:

𝑃𝐵𝖳 = 𝑃𝐼𝐵𝖳 = (𝑃 ∗𝑅)⏟
𝑃

(𝑅−1𝐵∗𝖳 )⏟⏟⏟⏟⏟
𝐵𝖳 

(20)

Earlier, we showed that 𝐵 could be cho-
sen to store an orthonormal basis, but this
wasn’t strictly necessary.

It can be demonstrated analytically that
it is sufficient to choose 𝑅 such that 𝐵𝑇 𝐵
is diagonal, which is enough to ensure
𝐵𝑇 𝐵 = 𝐼 . This will determine the form of
𝐵, which can then be interpreted as a ma-
trix storing an orthonormal basis.

As the proof involves boring linear alge-
bra, we relied on geometric intuition in-
stead (though formal proof is possible!).

We will use the freedom in choosing 𝑅 and let 𝑃𝖳 𝑃  and 𝐵𝖳 𝐵 be diagonal:

✴ 𝑃  stores the principal components in their respective coordinates.

✴ 𝐵 stores the orthonormal “basis” of principal components in the coordinates of the origi-
nal space, so 𝐵𝖳 𝐵 = 𝐼 .

{𝑃𝖳 𝑃 = Λ
𝐵𝖳 𝐵 = 𝐼 (21)

Now, we can further simplify the expressions for 𝑃  and 𝐵:

𝑃 = 𝐹𝐵(𝐵𝖳 𝐵)−1 = 𝐹𝐵𝐼,

𝐵 = 𝐹𝖳 𝑃(𝑃𝖳 𝑃)−1 = 𝐹𝖳 𝑃Λ−1.
(22)

Eliminate 𝑃 :

𝐵Λ = 𝐹𝖳 𝐹𝐵 (23)

This means that the columns of 𝐵 are eigen-
vectors of 𝐹𝖳 𝐹 :

𝒃𝑗 ⋅ 𝜆𝑗 = (𝐹𝖳 𝐹)𝒃𝑗. (24)

Eliminate 𝐵:

𝑃Λ = 𝐹𝐹𝖳 𝑃 (25)

This means that the columns of 𝑃  are eigen-
vectors of 𝐹𝐹𝖳 :

𝒑𝑗 ⋅ 𝜆𝑗 = (𝐹𝐹𝖳 )𝒑𝑗. (26)
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