1 GLM: Logistic regression

Logistic regression: A model predicts if the patient is a vegan (y = 1) or not (y = 0) by a result of
cholesterol test and gets the result # mmol/L. A binary response modeled with Bernoulli distribution
y ~ B(p), where p := Ply = 1] is the probability of being a vegan.

Bernoulli distribution belongs to the exponential family; in canonical form, it is:

y~ f(ylo) = (1—0a(6)) -,
where 6 = logit(p) = log(l%p) is the logit function.

Fitting the parameter 6 on the historical data:
0* = ar
gmg >
(z*,y")e(X,Y)*
Then, to make a prognosis, the probability of being a vegan is calculated:

fly=y'le=2".0)

In logistic regression, the connection be-
tween the input @ and the probability p is

modeled as:

log 11— = f+ By @

_—

logit p
The inverse of the logit function is the sig-
moid function o(f) = (1 + 6_9)71:
p=logit™ (8, + B, - x) = o (By + B, - x)

The parameters 3, and §; are trained on
the historical data:

By, By) =log [ [ P! (1 — p,)' ¥ — max.
A BosB1

Then, to make a prognosis, the probability

of a bad outcome is calculated:

(@) =0(By + By - ).

NB: We used distribution of y ~ B(p) to
derive the loss function:

¢=log [[Ply; = 1] - Ply; = 0],

but we ignore the distribution of y when
we make a prediction, we are only inter-
ested in

Exponential family: Bernoulli distribu-
tion B(p) belongs to the exponential fam-
ily, the exponential family parameter 6 can
be calculated from the Bernoulli parame-
ter p, then

y ~ Exp(0).



2 Generalized Linear Models (GLM)

Introduction to GLM: A generalized linear model (GLM) extends ordinary linear regression
by allowing for response variables that follow any exponential family distribution. The general
form is:

Y~ f(y | 6) =expl0-T(y) — A(6) + C(y)] 1)

Making Predictions: To make a prediction in GLM, we estimate the conditional expectation
(canonical mean parameter):

I(x)=ElY | X =x]=p ()
For most cases, the sufficient statistics T is trivial, and we can obtain the needed expectation
from the distribution parameters:
9(z) =E[Y | 0] =E[Y | 6 = FB| = E[Y | X = x] ®3)
For example, in logistic regression, the mean parameter corresponds to probability:

p=EY |0 =Py =1|6]=P[Y =1|X=z]=p (4)

Mean and Link Functions:

231 Mean Function
The mean function describes the expected value of the response variable Y (or sufficient sta-
tistics T(Y)) given current parameters:

=E[T(Y) | 0] (5)
232 Link Function

The link function connects linear parameters % = X@ (linear predictor) to the expected value
(canonical mean):

w=1(0) (6)
Its inverse calculates parameters:

0=y (n) (7)

GLM as Linear + Nonlinear Transforms: GLM combines linear and nonlinear transforma-
tions:

1. Linear predictor computation:

O(x) = BT & = Mz (8)
0=XpB 9)
2. Link function application:

v 0=1(p) (10)
P(Elylz]) = BT x (11)
Y(E[y|X]) = XB (12)

3. Final prediction via inverse link function:
j(z) =Elylz] =4 (8" x) (13)

Logistic Regression as GLM: Logistic regression is a special case of GLM using Bernoulli
distribution:

y;~B(p), Ply,=1=p (14)

In canonical form:



Y~ fly | 0) = (1—0(0)) e
The link function can be found from:
)= (Ved)

Where:




3 GLM: Cross-entropy and log-loss

Model: Logistic regression represents a special case of GLM where the binary response vari-
able Y follows a Bernoulli distribution:

y; ~ B(p), p="Ply, =1] (19)

Here, p represents the success probability in a single trial. The canonical form of the Bernoulli
distribution is:

] 1
yi ~ f(yl0) = o(=0) - ¥, o(0) = T5re? (20)
Starting from the general GLM form:
Y ~ f(y|0) = expl - T(y) — A(6) + C(y)] (21)

We can derive both cross-entropy and log-loss directly, assuming only the Bernoulli distribu-
tion of Y.

Link Function: The link function ¢ connects the response variable’s mean p = E[Y] to the
distribution’s canonical parameters 6:

B=1(0) (22)
In GLM, we assume the canonical parameters are linear:
9;=x] B, 6=Xp (23)
where B represents the linear coefficients corresponding to features in .

For the Bernoulli distribution, the link function takes the form:

() = log T = logit (24)

Cross-entropy Loss: We begin with the log-  Log-loss: The log-loss function ¢(M) can be
likelihood function I(0) for the Bernoulli-dis-  derived by taking the negative log-likelihood:
tributed response variable Y, assuming 6 =

x! B —l(9)=—2{0~yi+log1j_:9}
10) =log [T £(vil0)

= logHU(—G) - efvi

- ) X _ log(l+e9),ify=1
_;{0 v; +loga(—=0)} _Z{log(l—i-e@),ifyzo

' (26)

R 1 ) N 1 1+ 0-sgny;
= {0 wron | 2 tos(1 +t)
) ) - Zlog(l + e<wi73>~sgnyi)

= Z y; log + log - i

: 1—u 14+ 4=

¢ (25) = Zlog(l + e M)
= Z{y-log K + log 1=n } ' -

all GA S 1—p+p = {(M(8)) — min

= {vilogp—y,log(1 — ) +log(1 — )}

Z —loge9+log%,ify=1
= -0 .
7 | —log 5= ify=0

- Z{yi log 4 (1 —y;) log(1 — p)}
3 Z{yi logp + (1 —y;)log(1 —p)}

= 1(p(8)) — max

Making Predictions: To make a prediction:
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