
1 GLM: Logistic regression

Logistic regression: A model predicts if the patient is a vegan (𝑦 = 1) or not (𝑦 = 0) by a result of
cholesterol test and gets the result 𝑥 mmol/L. A binary response modeled with Bernoulli distribution
𝑦 ∼ ℬ(𝑝), where 𝑝 ≔ ℙ[𝑦 = 1] is the probability of being a vegan.

Bernoulli distribution belongs to the exponential family; in canonical form, it is:
𝑦 ∼ 𝑓(𝑦|𝜃) = (1 − 𝜎(𝜃)) ⋅ 𝑒𝜃⋅𝑦,

where 𝜃 = logit(𝑝) = log( 𝑝
1−𝑝) is the logit function.

Fitting the parameter 𝜃 on the historical data:
𝜃∗ = arg max

𝜃
∑

(𝑥∗,𝑦∗)∈(𝑋,𝑌 )ℓ

𝑓(𝑦 = 𝑦∗|𝑥 = 𝑥∗, 𝜃)

Then, to make a prognosis, the probability of being a vegan is calculated:

In logistic regression, the connection be&
tween the input 𝒙 and the probability 𝑝 is
modeled as:

log 𝑝
1 − 𝑝⏟

logit 𝑝

= 𝛽0 + 𝛽1 ⋅ 𝑥

The inverse of the logit function is the sig&
moid function 𝜎(𝜃) = (1 + 𝑒−𝜃)−1:
𝑝 = logit−1(𝛽0 + 𝛽1 ⋅ 𝑥) = 𝜎(𝛽0 + 𝛽1 ⋅ 𝑥)

The parameters 𝛽0 and 𝛽1 are trained on
the historical data:
ℓ(𝛽0, 𝛽1) = log ∏

𝑖
𝑝𝑦𝑖

𝑖 (1 − 𝑝𝑖)
1−𝑦𝑖 → max

𝛽0,𝛽1
.

Then, to make a prognosis, the probability
of a bad outcome is calculated:

𝑝(𝒙) = 𝜎(𝛽0 + 𝛽1 ⋅ 𝑥).

NB: We used distribution of 𝑦 ∼ ℬ(𝑝) to
derive the loss function:

ℓ = log ∏
𝑖

ℙ[𝑦𝑖 = 1]𝑦𝑖 ⋅ ℙ[𝑦𝑖 = 0]1−𝑦𝑖 ,

but we ignore the distribution of 𝑦 when
we make a prediction, we are only inter&
ested in

Exponential family: Bernoulli distribu&
tion ℬ(𝑝) belongs to the exponential fam&
ily, the exponential family parameter 𝜃 can
be calculated from the Bernoulli parame&
ter 𝑝, then

𝑦 ∼ Exp(𝜃).



2 Generalized Linear Models (GLM)

Introduction to GLM: A generalized linear model (GLM) extends ordinary linear regression
by allowing for response variables that follow any exponential family distribution. The general
form is:

𝑌 ∼ 𝑓(𝑦 | 𝜽) = exp[𝜽 ⋅ 𝑇 (𝑦) − 𝐴(𝜽) + 𝐶(𝑦)] (1)

Making Predictions: To make a prediction in GLM, we estimate the conditional expectation
(canonical mean parameter):

𝑦(𝒙) ≔ 𝔼[𝑌 | 𝑋 = 𝒙] ≡ 𝜇 (2)

For most cases, the sufficient statistics T is trivial, and we can obtain the needed expectation
from the distribution parameters:

𝑦(𝒙) ≔ 𝔼[𝑌 | 𝜽] = 𝔼[𝑌 | 𝜽 = 𝐹𝜷] = 𝔼[𝑌 | 𝑋 = 𝒙] (3)

For example, in logistic regression, the mean parameter corresponds to probability:

𝜇 ≔ 𝔼[𝑌 | 𝜽] = ℙ[𝑌 = 1 | 𝜽] = ℙ[𝑌 = 1 | 𝑋 = 𝒙] = 𝑝 (4)

Mean and Link Functions:

231 Mean Function
The mean function describes the expected value of the response variable Y (or sufficient sta&
tistics T(Y)) given current parameters:

𝝁 ≔ 𝔼[𝑇 (𝒀 ) | 𝜽] (5)

232 Link Function
The link function connects linear parameters θ = Xβ (linear predictor) to the expected value
(canonical mean):

𝝁 = 𝜓(𝜽) (6)

Its inverse calculates parameters:

𝜽 = 𝜓−1(𝝁) (7)

GLM as Linear + Nonlinear Transforms: GLM combines linear and nonlinear transforma&
tions:

1. Linear predictor computation:

𝜃(𝒙) = 𝜷𝖳 𝒙 = 𝑀𝒙 (8)

𝜽 = 𝑋𝜷 (9)

2. Link function application:

𝜓 : 𝜃 = 𝜓(𝜇) (10)

𝜓(𝔼[𝑦|𝒙]) = 𝜷𝖳 𝒙 (11)

𝜓(𝔼[𝑦|𝑋]) = 𝑋𝜷 (12)

3. Final prediction via inverse link function:

𝑦(𝒙) = 𝔼[𝑦|𝒙] = 𝜓−1(𝜷𝖳 𝒙) (13)

Logistic Regression as GLM: Logistic regression is a special case of GLM using Bernoulli
distribution:

𝑦𝑖 ∼ ℬ(𝑝), ℙ[𝑦𝑖 = 1] = 𝑝 (14)

In canonical form:



𝑦𝑖 ∼ 𝑓(𝑦 | 𝜃) = (1 − 𝜎(𝜃)) ⋅ 𝑒𝜃⋅𝑦 (15)

The link function can be found from:

𝜓 = (𝛁𝜽𝐴)−1 (16)

Where:

𝜕𝐴
𝜕𝜃

= 𝜎(𝜃) = 1
1 + 𝑒−𝜃 (17)

𝜓(𝜇) = 𝜎−1(𝑝) = ln 𝑝
1 − 𝑝

= logit 𝑝 (18)



3 GLM: Cross-entropy and log-loss

Model: Logistic regression represents a special case of GLM where the binary response vari&
able 𝑌  follows a Bernoulli distribution:

𝑦𝑖 ∼ ℬ(𝑝), 𝑝 ≔ ℙ[𝑦𝑖 = 1] (19)

Here, 𝑝 represents the success probability in a single trial. The canonical form of the Bernoulli
distribution is:

𝑦𝑖 ∼ 𝑓(𝑦|𝜃) = 𝜎(−𝜃) ⋅ 𝑒𝜃⋅𝑦, 𝜎(𝜃) = 1
1 + 𝑒−𝜃 (20)

Starting from the general GLM form:

𝑌 ∼ 𝑓(𝑦|𝜽) = exp[𝜽 ⋅ 𝑇 (𝑦) − 𝐴(𝜽) + 𝐶(𝑦)] (21)

We can derive both cross&entropy and log&loss directly, assuming only the Bernoulli distribu&
tion of 𝑌 .

Link Function: The link function 𝜓 connects the response variable’s mean 𝜇 = 𝔼[𝑌 ] to the
distribution’s canonical parameters 𝜽:

𝝁 = 𝜓(𝜽) (22)

In GLM, we assume the canonical parameters are linear:

𝜃𝑖 = 𝒙𝖳 
𝑖 𝜷, 𝜽 = 𝑋𝜷 (23)

where 𝜷 represents the linear coefficients corresponding to features in 𝒙.

For the Bernoulli distribution, the link function takes the form:

𝜓(𝜇) = log 𝜇
1 − 𝜇

= logit 𝜇 (24)

Cross-entropy Loss: We begin with the log&
likelihood function 𝑙(𝜃) for the Bernoulli&dis&
tributed response variable 𝑌 , assuming 𝜃 =
𝒙𝖳 𝜷:

𝑙(𝜃) = log ∏
𝑖

𝑓(𝑦𝑖|𝜃)

= log ∏
𝑖

𝜎(−𝜃) ⋅ 𝑒𝜃⋅𝑦𝑖

= ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 𝜎(−𝜃)}

= ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 1
1 + 𝑒−(−𝜃) }

= ∑
𝑖

{𝑦𝑖 log 𝜇
1 − 𝜇

+ log 1
1 + 𝜇

1−𝜇
}

= ∑
𝑖

{𝑦𝑖 log 𝜇
1 − 𝜇

+ log 1 − 𝜇
1 − 𝜇 + 𝜇

}

= ∑
𝑖

{𝑦𝑖 log 𝜇 − 𝑦𝑖 log(1 − 𝜇) + log(1 − 𝜇)}

= ∑
𝑖

{𝑦𝑖 log 𝜇 + (1 − 𝑦𝑖) log(1 − 𝜇)}

= ∑
𝑖

{𝑦𝑖 log 𝑝 + (1 − 𝑦𝑖) log(1 − 𝑝)}

= 𝑙(𝑝(𝜷)) → max
𝜷

(25)

Log-loss: The log&loss function ℓ(𝑀) can be
derived by taking the negative log&likelihood:

−𝑙(𝜃) = − ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 𝑒−𝜃

1 + 𝑒−𝜃 }

= ∑
𝑖 {{

{
{{− log 𝑒𝜃 + log 𝑒−𝜃

1+𝑒−𝜃 , if 𝑦 = 1
− log 𝑒−𝜃

1+𝑒−𝜃 , if 𝑦 = 0

= ∑
𝑖

{log(1 + 𝑒−𝜃), if 𝑦 = 1
log(1 + 𝑒𝜃), if 𝑦 = 0

= ∑
𝑖

log(1 + 𝑒𝜃⋅ sgn 𝑦𝑖)

= ∑
𝑖

log(1 + 𝑒⟨𝒙𝑖,𝜷⟩⋅ sgn 𝑦𝑖)

= ∑
𝑖

log(1 + 𝑒−𝑀𝑖)

= ℓ(𝑀(𝜷)) → min
𝜷

(26)

Making Predictions: To make a prediction:



𝑝(𝒙) = 𝜇(𝒙) = 𝜓(𝜃 = 𝒙 ⋅ 𝜷) = 1
1 + 𝑒𝒙⋅𝜷 (27)
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