1 Normal distribution

Univariate: A random variable £ is said to have a normal distribution with mean p and vari-
ance o? if its probability density function (pdf) is given by
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where p is the mean and o2 is the variance of the distribution. More compactly, it can be

written as
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Uncorrelated multivariate: A random vector £ = ( : ) is said to have an uncorrelated mul-
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random component of £ is given by
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where p; is the mean and 012. is the variance of the j-th component of the.

All components of € are assumed to be independent, so the joint pdf of & is the product of
the pdfs of its components:
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Covariance matrix: All variance parameters a%, ey O'i can be combined into a covariance ma-

trix X. The covariance matrix is a symmetric positive definite matrix that describes the co-
variance between the components of £.
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Here, the covariance matrix is diagonal (all off-diagonal elements are zero), because we as-
sumed that the components of & are uncorrelated, i.e., Cov [gi,gj] =0 for all ¢ £ j.
The pdf of the multivariate normal distribution can be written in terms of the covariance
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The covariance matrix ¥ above is a diagonal matrix, but in general, it’s a symmetric positive
definite matrix that describes the covariance between the components of &:
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If we substitute the non-diagonal covariance matrix ¥ into the pdf, we get the general form
of the multivariate normal distribution.

Technically, each component of ¥ is the covariance between the corresponding components
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The term det ¥ is the generalized variance.

For a sample X = {z,,...,z,} CR, the
variance is the average of the squared dif-
ferences from the mean:
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Mahalanobis distance: The distance between a point x and the distribution N (u, X) can be
measured using the Mahalanobis distance.

The premise is that the covariance matrix ¥ captures the correlations between the compo-
nents of £&. The Mahalanobis distance is a measure of how many standard deviations away a
point @ is from the mean p, taking into account the correlations between the components of

.
We can define a quadratic form
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it can be interpreted

Quadratic form Q(x) is a scalar function
of a vector x that can be expressed as as
weighted sum of the squares of the compo-
nents of x:
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These weights can be gathered into a ma-
trix W, and the quadratic form can be
written as a matrix product:

Qz) =" Wa.
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