
1 Normal distribution

Univariate: A random variable 𝜉 is said to have a normal distribution with mean 𝜇 and vari�
ance 𝜎2 if its probability density function (pdf) is given by

𝑓𝜉(𝑥) = 1
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where 𝜇 is the mean and 𝜎2 is the variance of the distribution. More compactly, it can be
written as

𝜉 ∼ 𝒩(𝜇, 𝜎2) (2)

Uncorrelated multivariate: A random vector 𝝃 = (
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where 𝜇𝑗 is the mean and 𝜎2
𝑗  is the variance of the 𝑗�th component.

The uncorrelated multivariate normal dis�
tribution is a special case of the general
multivariate normal. When components
are uncorrelated, the covariance matrix is
diagonal, which simplifies many calcula�
tions.

All components of 𝝃 are assumed to be independent, so the joint pdf of 𝝃 is the product of
the pdfs of its components:
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Covariance matrix: All variance parameters 𝜎2
1, …, 𝜎2

𝑘 can be combined into a covariance ma�
trix Σ. The covariance matrix is a symmetric positive definite matrix that describes the co�
variance between the components of 𝝃.

Σ =

(
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(𝜎2

1
⋱

𝜎2
𝑘)
)))
)

(5)

Here, the covariance matrix is diagonal (all off�diagonal elements are zero), because we as�
sumed that the components of 𝝃 are uncorrelated, i.e., Cov[𝜉𝑖, 𝜉𝑗] = 0 for all 𝑖 ≠ 𝑗.

The pdf of the multivariate normal distribution can be written in terms of the covariance
matrix:

𝑓𝝃(𝑥1, …, 𝑥𝑘) =
exp{−1

2(𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁)}
√(2𝜋)𝑘 det Σ

(6)

For a sample 𝑋 = {𝑥1, …, 𝑥ℓ} ⊂ ℝ, the
variance is the average of the squared dif�
ferences from the mean:

𝔻[𝑋] ≔ 1
ℓ

∑
ℓ

𝑖=1
(𝑥𝑖 − ̄𝑥)2.

Given another sample 𝑌 = {𝑦1, …, 𝑦ℓ} ⊂
ℝ, the co�variance between two samples is
characterized by how much they vary to�
gether:

Cov[𝑋, 𝑌 ] ≔ 1
ℓ

∑
ℓ

𝑖=1
(𝑥𝑖 − ̄𝑥) ⋅ (𝑦𝑖 − ̄𝑦).

Both per sample variance and two samples
covariance can be combined into a covari�
ance matrix.

Σ = (Cov[𝑥, 𝑥]
Cov[𝑦, 𝑥]

Cov[𝑥, 𝑦]
Cov[𝑦, 𝑦]) = ( 𝔻[𝑥]

Cov[𝑦, 𝑥]
Cov[𝑥, 𝑦]

𝔻[𝑦] ).

It will be shown below that this is equiva�
lent to the covariance matrix for a sample
of 2D vectors 𝒗𝑖 = (𝑥𝑖

𝑦𝑖
) ∈ ℝ2.

The covariance matrix Σ above is a diagonal matrix, but in general, it’s a symmetric positive
definite matrix that describes the covariance between the components of 𝝃:

Σ ≔
(
((
(Cov[𝜉1, 𝜉1]

⋮
Cov[𝜉𝑘, 𝜉1]

…
⋱
…

Cov[𝜉1, 𝜉𝑘]
⋮

Cov[𝜉𝑘, 𝜉𝑘])
))
). (7)

If we substitute the non�diagonal covariance matrix Σ into the pdf, we get the general form
of the multivariate normal distribution.

To characterize co�variance of multiple
samples

𝑋1 = {𝑥1,1, …, 𝑥1,ℓ}, …, 𝑋𝑘 = {𝑥𝑘,1, …, 𝑥𝑘,ℓ}
all together, we combine them into one
sample of 𝑘�dimensional data:

𝑉 = {𝒗1, …, 𝒗ℓ}, 𝒗𝑖 =
(
((
(𝑥1,𝑖

⋮
𝑥𝑘,𝑖)

))
).

The covariance between any two samples
𝑋𝑡 and 𝑋𝑞 is

Cov[𝑋𝑡, 𝑋𝑞] ≔ 1
ℓ

∑
ℓ

𝑖=1
(𝑥𝑡,𝑖 − ̄𝑥𝑡) ⋅ (𝑥𝑞,𝑖 − ̄𝑥𝑞).

Generally, for a sample of vectors
𝒗1, …, 𝒗ℓ ∈ ℝ𝑘:

Σ := 1
ℓ

∑
ℓ

𝑖=1
(𝒗𝑖 − ̄𝒗)(𝒗𝑖 − ̄𝒗)𝖳 

= 1
ℓ

∑
ℓ

𝑖=1
Cov[𝒗𝑖, 𝒗𝑖]

= 𝔼[(𝒗 − ̄𝒗)(𝒗 − ̄𝒗)𝖳 ].
which resembles the variance but in multi�
ple dimensions.

Technically, each component of Σ is the covariance between the corresponding components

Σ𝑖,𝑗 ≔ Cov[𝜉𝑖, 𝜉𝑗] = 𝔼[(𝜉𝑖 − 𝜇𝑖)(𝜉𝑗 − 𝜇𝑗)]. (8)

The term det Σ is the generalized variance.



Mahalanobis distance: The distance between a point 𝒙 and the distribution 𝒩(𝝁, Σ) can be
measured using the Mahalanobis distance.

Quadratic form 𝑄(𝒙) is a scalar function
of a vector 𝒙 that can be expressed as a
weighted sum of the squares of the compo�
nents of 𝒙:

𝑄(𝒙) = ∑
𝑖,𝑗

𝑤𝑖,𝑗𝑥𝑖𝑥𝑗.

These weights can be gathered into a ma�
trix 𝑊 , and the quadratic form can be
written as a matrix product:

𝑄(𝒙) = 𝒙𝖳 𝑊𝒙.

The premise is that the covariance matrix Σ captures the correlations between the compo�
nents of 𝝃. The Mahalanobis distance is a measure of how many standard deviations away a
point 𝒙 is from the mean 𝝁, taking into account the correlations between the components of
𝝃.

We can define a quadratic form

𝑄(𝒙) := (𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁)

= ∑
𝑖,𝑗

(𝑥𝑖 − 𝜇𝑖)(Σ−1)
𝑖,𝑗

(𝑥𝑗 − 𝜇𝑗). (9)

The square root of this quadratic form √𝑄(𝒙) is the Mahalanobis distance between a point
𝒙 and the distribution 𝒩(𝝁, Σ).



2 Multivariate Normal Distribution

General form: The probability density function of the multivariate normal distribution is
given by:

𝑓𝝃(𝑥1, …, 𝑥𝑘) ≔
exp{−1

2(𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁)}
√(2𝜋)𝑘 det Σ

(10)

where:
✴ 𝝃 = (

𝜉1
⋮

𝜉𝑘

) is the random vector

✴ 𝝁 ≔ 𝔼𝝃 = (
𝔼𝜉1

⋮
𝔼𝜉𝑘

) is the mean vector

✴ Σ𝑖,𝑗 ≔ Cov[𝜉𝑖, 𝜉𝑗] = 𝔼[(𝜉𝑖 − 𝜇𝑖)(𝜉𝑗 − 𝜇𝑗)] is the covariance matrix (symmetric positive
definite)

✴ det Σ is the generalized variance

✴ 𝑄(𝒙) = (𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁) is a quadratic form

✴ √𝑄(𝒙) is the Mahalanobis distance between a point 𝒙 and the distribution 𝒩(𝝁, Σ)

In compact notation, this is written as: 𝝃 ∼ 𝒩(𝝁, Σ)

Uncorrelated components: When the components of the distribution are uncorrelated:
Cor[𝜉𝑖, 𝜉𝑗] = 0 ∀𝑖 ≠ 𝑗

This has geometric implications � the axes of the probability density ellipsoid are parallel to
the coordinate axes.

The covariance matrix simplifies to a diagonal matrix: Σ = diag(𝜎2
1, …, 𝜎2

𝑘)

For uncorrelated components, the multivariate normal pdf can be expressed as a product of
univariate normal pdfs:

𝑓𝝃(𝑥1, …, 𝑥𝑘) :=
exp{−1

2(𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁)}
√(2𝜋)𝑘 det Σ
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This factorization enables simpler parameter estimation methods.

Decorrelation transformation:

Decorrelation is a critical preprocessing
step in many machine learning applica�
tions. It simplifies the data by removing
linear dependencies between features.

For correlated components, we need to find a transformation that makes the components un�
correlated. When components of a multivariate normal distribution are correlated, the covari�
ance matrix is not diagonal.

To decorrelate the components:

1. Apply spectral decomposition to the covariance matrix (a special case of SVD for symmet�
ric matrices):

Σ = 𝑉 𝑆𝑉 𝖳 , 𝑆 = diag(𝜆2
1, …, 𝜆2

𝑘)

2. The quadratic form can be rewritten as:

𝑄 = (𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁) = (𝒙 − 𝝁)𝖳 (𝑉 𝑆𝑉 𝖳 )−1(𝒙 − 𝝁)

= (𝒙 − 𝝁)𝖳 𝑉 −𝑇 𝑆−1𝑉 −1(𝒙 − 𝝁)

= (𝒙 − 𝝁)𝖳 𝑉 𝑆−1𝑉 𝖳 (𝒙 − 𝝁)

= (𝑉 𝖳 (𝒙 − 𝝁))𝖳 𝑆−1(𝑉 𝖳 (𝒙 − 𝝁))

(12)

3. Define the decorrelation transformation:

𝒙′ ≔ 𝑉 𝖳 𝒙

4. The transformed parameters are:



𝝁′ = 𝑉 𝖳 𝝁
Σ′ = 𝑆

(13)

5. To transform parameters back to the original space:

𝝁 = 𝑉 𝝁′

Σ = 𝑉 𝑆𝑉 𝖳 
(14)

For orthogonal (rotation) matrices: 𝑉 −1 =
𝑉 𝖳 , 𝑉 −𝑇 = 𝑉



3 Parameter Estimation for Normal Distribution

Maximum likelihood estimation: When a sample is generated from a Gaussian distribution,
we can estimate its parameters using maximum likelihood estimation:

𝜕
𝜕𝜇

ln 𝐿(𝝁, Σ | 𝑋ℓ) = 0 ⇒ 𝝁̂ = 1
ℓ

∑
𝒙∈𝑋ℓ

𝒙

𝜕
𝜕Σ

ln 𝐿(𝝁, Σ | 𝑋ℓ) = 0 ⇒ Σ̂ = 1
ℓ

∑
𝒙∈𝑋ℓ

(𝒙 − 𝝁̂)(𝒙 − 𝝁̂)𝖳 
(15)

The MLE estimates are asymptotically un�
biased and efficient, making them optimal
for large samples. For smaller samples,
however, the covariance estimate is biased.

Multicollinearity issues:

Multicollinearity is a statistical phenom�
enon where two or more predictor vari�
ables in a model are highly correlated.
This creates redundant information that
doesn’t contribute uniquely to the model’s
explanatory power.

When estimating parameters from data, multicollinearity can cause problems:

✴ The sample covariance matrix Σ̂ is constructed from ℓ rank�1 matrices, so rank Σ̂ ≤ ℓ

✴ If the number of features exceeds the sample size, Σ̂ will be singular (det = 0)

✴ A singular covariance matrix cannot be inverted, making it impossible to evaluate the den�
sity function

Solutions to multicollinearity include:
1. Reducing the number of features through feature selection methods (PCA, SFS, etc.)
2. Increasing the sample size
3. Adding regularization to the covariance matrix:

Σ̂′ ← Σ̂ + 𝜏𝐼
4. Assuming uncorrelated features (diagonal covariance matrix)



4 Non-parametric Density Estimation

Parametric vs non-parametric approaches:

The choice between parametric and non�
parametric methods involves a bias�vari�
ance tradeoff. Parametric methods gener�
ally have higher bias but lower variance,
while non�parametric methods have lower
bias but higher variance.

Parametric methods for density estimation assume a specific distribution shape (e.g., normal),
which simplifies calculations and requires less data. However, they can be inaccurate if the
actual data distribution differs significantly from the assumed form and are limited in captur�
ing complex structures.

Non�parametric methods offer greater flexibility and can provide more accurate estimates for
complex and multimodal distributions without assuming a specific form. However, they typi�
cally require larger data sets, are more computationally intensive, and their results are harder
to interpret due to the lack of explicit parameters.

Empirical density estimator: The simplest non�parametric estimator for a probability density
function is:

𝑓(𝒙) ≔ 1
ℓ

∑
𝒙′∈𝑋ℓ

⟦𝒙 = 𝒙′⟧, (16)

and for the cumulative distribution function:

𝐹(𝒙) ≔ 1
ℓ

∑
𝒙′∈𝑋ℓ

⟦𝑥′
1 ≤ 𝑥1⟧⋯⟦𝑥′

𝑘 ≤ 𝑥𝑘⟧ (17)

where:
✴ 𝑓 is a pdf/pmf

✴ 𝐹  is a cdf

✴ 𝒙′ = (𝑥′
1, …, 𝑥′

𝑘) is a point from the sample 𝑋ℓ

✴ 𝒙 = (𝑥1, …, 𝑥𝑘) is a new point

Histogram density estimator: A more practical approach divides the feature space into bins:

𝑓(𝒙) ≔ 1
ℓ

⋅ #(𝐵(𝒙) ∩ 𝑋ℓ), (18)

and for the CDF:

𝐹(𝒙) ≔ 1
ℓ

∑
𝐵

⟦𝐵 ≤ 𝐵(𝒙)⟧ ⋅ #𝐵 (19)

where:
✴ 𝑋ℓ ⊆ ⨆𝐵 𝐵 is the partition into bins

✴ #𝐵 is the bin size

✴ 𝐵(𝒙) is the specific bin containing 𝒙

✴ 𝐵 ≤ 𝐵′ iff ⋀𝑘
𝑗=1

sup 𝐵𝑗 ≤ sup 𝐵′
𝑗 allows ordering of bins

✴ 𝑛𝑗 is the number of bins for the 𝑗th feature

✴ ℎ𝑗 ≔ 𝑓max
𝑗 −𝑓min

𝑗
𝑛  is the corresponding bin width

Window averaging:

The choice of window width ℎ is critical in
kernel density estimation and presents the
classic bias�variance tradeoff.

Instead of bins, we can use a window function centered at each data point:

𝑓(𝒙) ≔ 1
ℓ

⋅ 1
2ℎ

∑
𝒙′∈𝑋ℓ

⟦‖𝒙 − 𝒙′‖
ℎ

< 1⟧, (20)

and for the CDF:

𝐹(𝒙) ≔ 1
ℓ

∑
𝒙′∈𝑋ℓ

⟦𝒙′ ≤ 𝒙 ⊕ ℎ⟧ (21)

where:



✴ ℎ is the window width (radius)

✴ 𝒙′ ≤ 𝒙 means all components are less or equal

✴ ⊕ means componentwise addition

✴ 𝐾(𝑟) = 1
2⟦|𝑟| < 1⟧ is a kernel function



5 Kernel Density Estimation

Parzen-Rosenblatt window method:

Kernel density estimation is often called
the Parzen�Rosenblatt window method af�
ter its developers Emanuel Parzen and
Murray Rosenblatt.

There are two main approaches for multivariate density estimation:

1. Product kernel approach (assumes local independence):

𝑓(𝒙) ≔ 1
ℓ

∑
𝒙′∈𝑋ℓ

∏
𝑘

𝑗=1

1
ℎ𝑗

⋅ 𝐾(𝒙𝑗 − 𝒙′𝑗

ℎ𝑗
) (22)

2. Multivariate kernel approach:

𝑓(𝒙) ≔ 1
ℓ

⋅ 1
𝑉 (ℎ)

∑
𝒙′∈𝑋ℓ

𝐾(𝜌(𝒙, 𝒙′)
ℎ

) (23)

where:
✴ 𝐾(𝑟) is a kernel function satisfying:

➤ ∫ 𝐾(𝑟) d𝑟 = 1
➤ 𝐾(𝑟) > 0
➤ For all 𝑟 > 0: 𝐾(𝑟) ↘ (non�increasing)

✴ 𝑉 (ℎ) ≔ ∫+∞
−∞

𝐾( 𝜌
ℎ) d𝜌

Kernel functions: Several standard kernel functions are used in practice:
✴ Epanechnikov kernel: 𝐸(𝑟) = 3

4(1 − 𝑟2)
+

✴ Quartic (biweight) kernel: 𝑄(𝑟) = 15
16(1 − 𝑟2)2 ⋅ ⟦|𝑟| > 01⟧

✴ Triangle kernel: 𝑇 (𝑟) = (1 − |𝑟|)+

✴ Gaussian kernel: 𝐺(𝑟) = 1√
2𝜋𝑒−𝑟2

2

✴ Uniform kernel: Π(𝑟) = 1
2 ⋅ ⟦|𝑟| ≥ 1⟧

The Epanechnikov kernel is theoretically
optimal in terms of mean integrated
squared error, but in practice, the choice
of kernel usually has less impact than the
bandwidth selection.

Bandwidth selection: The optimal bandwidth can be found by minimizing the cross�valida�
tion criterion:

𝑄(ℎ) = − ∑
𝒙∈𝑋ℓ

ln 𝑓(𝒙 | 𝑋ℓ \ 𝒙, ℎ) → min
ℎ

(24)

where:
✴ ℎ is the window width (radius)

✴ 𝑓 is the estimated density function

✴ The notation indicates leave�one�out cross�validation

Cross�validation provides a data�driven
approach to bandwidth selection, avoiding
both oversmoothing and undersmoothing.

This approach:
1. Excludes each point from the training set
2. Estimates the density at that point using the remaining points
3. Minimizes the negative log�likelihood of these estimates

Relationship to other methods:

The connection between these methods
highlights the unified theoretical foun�
dation underlying non�parametric ap�
proaches.

Kernel methods form a common framework that includes:

1. Density estimation: 𝑎1(𝒙) = 1
ℓ⋅𝑉 (ℎ) ∑𝒙′∈𝑋ℓ 𝐾(𝜌(𝒙,𝒙′)

ℎ )
2. Classification (Parzen window): 𝑎2(𝒙) = arg max𝑦∈𝑌 ∑𝒙′∈𝑋ℓ⟦𝑦(𝒙′) = 𝑦⟧ ⋅ 𝐾(𝜌(𝒙,𝒙′)

ℎ )
3.

Regression (Nadaraya�Watson): 𝑎3(𝒙) =
∑𝒙′∈𝑋ℓ 𝑦(𝒙′)⋅𝐾(𝜌(𝒙,𝒙′)

ℎ )

∑𝒙′ 𝐾(𝜌(𝒙,𝒙′)
ℎ )

In these methods:
✴ 𝜌 is a distance function

✴ 𝐾(𝜌) is a similarity function (larger distance means smaller similarity)



6 Mixture Models

Definition:

Mixture models provide a flexible frame�
work that can approximate any continuous
distribution with arbitrary precision.

A mixture model combines multiple probability distributions:

𝑓(𝒙) ≔ ∑
𝑁

𝑛=1
𝑤𝑛 ⋅ 𝑓𝑛(𝒙 | 𝜽𝑛) (25)

where:
✴ 𝒙 ∼ 𝒟1, …, 𝒟𝑁  indicates data generated by 𝑁  different distributions

✴ 𝑤𝑛 ≔ ℙ(𝒙 ∼ 𝒟𝑛) is the probability of being generated by the 𝑛th distribution

✴ ∑𝑁
𝑛=1 𝑤𝑛 = 1, 𝑤𝑛 ≥ 0

✴ 𝑓𝑛(𝒙 | 𝜽𝑛) is the pdf/pmf of the 𝑛th distribution

Parameter estimation: The log�likelihood function for a mixture model is:

𝑙(𝒘, 𝜽) = ∑
𝒙∈𝑋ℓ

ln ∑
𝑁

𝑛=1
𝑤𝑛 ⋅ 𝑓𝑛(𝒙 | 𝜽𝑛) → max

𝒘,𝜽
(26)

where:
✴ ∑𝑛 𝑤𝑛 = 1, 𝑤𝑛 ≥ 0 are constraints

✴ 𝑓𝑛(𝒙 | 𝜽𝑛) is the pdf/pmf of the 𝑛th distribution

Direct optimization is challenging because the logarithm of a sum doesn’t simplify easily. The
EM algorithm provides an iterative solution.

Fixed point method:

The fixed point method underlies many it�
erative algorithms in machine learning, in�
cluding the EM algorithm.

Before introducing EM, it’s helpful to understand the fixed point iteration method:

𝑥𝑛+1 = 𝑓(𝑥𝑛)

This method converges if: |𝑓 ′(𝑥∗)| < 1

where 𝑥∗ is the fixed point such that 𝑓(𝑥∗) = 𝑥∗.



7 Expectation-Maximization Algorithm

EM algorithm:

The EM algorithm was formalized by
Dempster, Laird, and Rubin in 1977,
though similar approaches had been used
earlier.

The EM algorithm iteratively optimizes parameters 𝑤𝑛 and 𝜽𝑛 for mixture components. Each
iteration consists of two steps:

1. Expectation step (E�step): Calculate the posterior probability for each data point:

𝑤′
𝑛(𝒙) ≔ ℙ[𝒙 ∼ 𝑓𝑛 | 𝒙] = 𝑤𝑛 ⋅ 𝑓𝑛(𝒙 | 𝜽𝑛)

∑𝑁
𝑚=1 𝑤𝑚𝑓𝑚(𝒙,𝜽𝑚)

(27)

2. Maximization step (M�step): Update parameters:

𝜽𝑛 ← arg max
𝜽

∑
𝒙∈𝑋ℓ

𝑤′
𝑛(𝒙) ⋅ ln 𝑓(𝒙 | 𝜽𝑛) (28)

𝑤𝑛 ← 1
ℓ

∑
𝒙∈𝑋ℓ

𝑤′
𝑛(𝒙) (29)

Theoretical foundation:

The EM algorithm can be derived us�
ing the Lagrangian function and Karush�
Kuhn�Tucker conditions.

The EM algorithm optimizes a Lagrangian function:

𝑄(𝒘, Θ) = ∑
𝒙∈𝑋ℓ

ln(∑
𝑁

𝑛=1
𝑤𝑛 ⋅ 𝑓𝑛(𝒙 | 𝜽𝑛)) − 𝜆 ⋅ (∑

𝑁

𝑛=1
𝑤𝑛 − 1) → max

𝒘,Θ
(30)

where:
✴ Θ = [𝜽1, …, 𝜽𝑁 ] is the parameters matrix

✴ 𝜆 is the Lagrange multiplier

✴ 𝑓𝑛 is the pdf/pmf of the 𝑛th distribution

✴ 𝑤𝑛 ≔ ℙ[𝒙 ∼ 𝑓𝑛] is the probability of coming from the 𝑛th distribution

Variants of EM:

Generalized EM (GEM) relaxes the maximization requirement:
✴ Standard EM: 𝜽(𝑡+1) ← arg max𝜽 ℓ(𝜽)

✴ GEM: 𝜽(𝑡+1) ← 𝜽∗ : ℓ(𝜽∗) > ℓ(𝜽(𝑡))

Stochastic EM (SEM) optimizes parameters using sampled subsets:
✴ Generate samples from the estimated distributions

✴ Optimize parameters independently for each component

✴ This often accelerates convergence and can use standard maximum likelihood methods

Determining the number of components: Several approaches can determine the optimal num�
ber of distributions 𝑁  in a mixture:

1. Greedy addition: Start with fewer components; add new components if the likelihood for
some data points is below a threshold

2. Greedy deletion: Start with more components; remove components with small weights
3. AddDel: Combination of both approaches
4. Regularization: Use cross�entropy regularization to encourage sparsity in component

weights
Information criteria like AIC or BIC can
also be used to select the optimal number
of components, balancing model complex�
ity with goodness�of�fit.

Hierarchical EM: Hierarchical EM extends the standard algorithm to restore hierarchical re�
lationships in the data. It operates by greedily adding components and splitting components
with low likelihood. This approach is useful for clustering and enhancing data understanding
by revealing structure where single clusters may have multiple subclusters.



8 Comparing Density Estimation Methods

Framework comparison: Different approaches to density estimation include:

1. Parametric: Assumes a specific functional form

𝑓(𝒙) = 𝑓(𝒙 | 𝜽)

2. Non�parametric kernel: Based on local estimations around each training point

𝑓(𝒙) = 1
ℓ ∑𝒙′∈𝑋ℓ

1
𝑉 (ℎ)𝐾(𝜌(𝒙,𝒙′)

ℎ )

3. Mixture models: Combines multiple distributions

𝑓(𝒙) = ∑𝑁
𝑛=1 𝑤𝑛 ⋅ 𝑓𝑛(𝒙 | 𝜽𝑛)

Mixture models provide a unified frame�
work � when 𝑁 = 1, they reduce to para�
metric methods, and as 𝑁  approaches the
sample size, they approximate non�para�
metric methods.

These approaches represent a spectrum: mixture models generalize both parametric methods
(when 𝑁 = 1) and non�parametric approaches (when 𝑁  equals the sample size).
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