
1 Quantile ℚ𝑞 of a random variable

Quantile of a sample: Given an unordered sample 𝑦1, 𝑦2, …, 𝑦ℓ, we can construct a sorted
sample 𝑦(1) ≤ 𝑦(2) ≤ … ≤ 𝑦(ℓ), where 𝑦(𝑖) is the 𝑖th smallest value of the sample (𝑖 = 1..ℓ), also
known as the 𝑖th order statistic.

Some order statistics:
✴ 𝑦(1) = min 𝑌  is the 1st order statistic

✴ 𝑦(2) is the 2nd order statistic (2nd
smallest value)

✴ 𝑦(ℓ/2) is the median, which divides the
sample in half

✴ 𝑦(ℓ) = max 𝑌  is the last (ℓth) order sta�
tistic

NB: In 𝑦(𝑖), values 𝑖 = 1..ℓ are integers,
while in 𝑦(𝑞), values 𝑞 ∈ [0..1] are frac�
tional, e.g., 𝑦(10) refers to the 10th order
statistic, while 𝑦(0.1) refers to the 0.1�quan�
tile.

Informally, the 𝑞�quantile 𝑦(𝑞) is the value that divides the ordered sample into two parts with
proportions 𝑞 : (1 − 𝑞). However, this definition is ambiguous. One practical approach is to
use different formulas for 𝑞 ⋅ ℓ ∉ ℕ and 𝑞 ⋅ ℓ ∈ ℕ:

In practice, other definitions of quantiles
𝑦(𝑞) are also used, e.g., 𝑦(𝑞) ≔ 𝑦(⌈𝑞⋅ℓ⌉) for
any ℓ

𝑦(𝑞) ≔ {𝑦(⌈𝑞⋅ℓ⌉) 𝑞 ⋅ ℓ is not integer
1
2(𝑦(𝑞⋅ℓ) + 𝑦(𝑞⋅ℓ+1)) 𝑞 ⋅ ℓ is integer (1)

Quantile of a random variable: For a random variable 𝑌 , the quantile function, denoted ei�
ther as ℚ𝑞[𝑌 ] or 𝑦(𝑞), is defined as the inverse of its CDF:

ℚ𝑞[𝑌 ] ≔ ℱ−1
𝑌 (𝑞) = inf{𝑦 | ℱ𝑌 (𝑦) ≥ 𝑞}, (2)

where inf denotes the infimum, which is the greatest lower bound, i.e., ℚ𝑞[𝑌 ] is the smallest
value 𝑦 for which the probability ℙ[𝑌 ≤ 𝑦] is at least 𝑞.

Example: For a uniform distribution on interval
[𝑎, 𝑏], the CDF is:

ℱ𝑌 (𝑦∗) =

{{
{
{{

𝑦∗−𝑎
𝑏−𝑎 , 𝑦∗ ∈ [𝑎..𝑏]
0, 𝑦∗ < 𝑎
1, 𝑦∗ > 𝑏

The corresponding quantile function is:
ℚ𝑞[𝑌 ] = ℱ−1

𝑌 (𝑞) = 𝑎 + 𝑞 ⋅ (𝑏 − 𝑎).

Example: For a sample {𝑦1, …, 𝑦ℓ}, the empiri�
cal CDF

ℱ𝑌 (𝑦) ≔ 1
ℓ

⋅ ∑
ℓ

𝑖=1
⟦𝑦𝑖 ≤ 𝑦⟧

can be used in (2) to define quantiles ℚ𝑞.

For a continuous random variable 𝑌 , the
probability of 𝑌  being less than or equal
to 𝑦∗ is given by the cumulative distribu�
tion function (CDF):

ℱ𝑌 (𝑦∗) ≔ ℙ[𝑌 ≤ 𝑦∗] = ∫
𝑦∗

𝑦=−∞
𝒻𝑌 (𝑦) d𝑦,

where 𝒻𝑌 (𝑦) is the probability density
function (PDF).

For a discrete random variable 𝑌 , the CDF
is defined as:

ℱ𝑌 (𝑦∗) ≔ ℙ[𝑌 ≤ 𝑦∗] = ∑
𝑦≤𝑦∗

𝓅𝑌 (𝑦)

where 𝓅𝑌 (𝑦) is the probability mass func�
tion (PMF).

Some important quantiles:
✴ ℚ0[𝑌 ] = min 𝑌  is the minimum value

✴ ℚ1/4[𝑌 ] is the 1st quartile (𝑄1)

✴ ℚ1/2[𝑌 ] is the median or 2nd quartile
(𝑄2)

✴ ℚ3/4[𝑌 ] is the 3rd quartile (𝑄3)

✴ ℚ1[𝑌 ] = max 𝑌  is the maximum value

Percentiles are also quantiles, e.g. ℚ0.95[𝑌 ]
is the 95th percentile.

Quantile ℚ𝑞 and probability ℙ: CDF maps real numbers 𝑦 ∈ ℝ to probabilities 𝑝 ∈ [0..1]:

ℱ𝑌 (𝑦) ≔ ℙ[𝑌 ≤ 𝑦] : 𝑦 → 𝑝. (3)

Quantile ℚ𝑞, being the inverse of CDF, maps probabilities 𝑝 ∈ [0..1] to real numbers 𝑦 ∈ ℝ:

ℚ𝑝[𝑌 ] = ℱ−1
𝑌 (𝑝) : 𝑝 → 𝑦, (4)

We specifically denote probability 𝑝 as 𝑞 to emphasize its connection to quantiles.

Technically, ℚ𝑞[𝑌 ] is a function of 𝑞, and
it is usually denoted as 𝑄𝑌 (𝑝), similar to
PDF 𝒻𝑌 (𝑦) and CDF ℱ𝑌 (𝑦).

However, the notation ℚ𝑞[𝑌 ] is used here
to emphasize the analogy between quan�
tiles ℚ𝑞[𝑌 ] and expectation 𝔼[𝑌 ].

The meaning of ℚ𝑞[𝑌 ] is that it is the value of 𝑌  such that the probability of 𝑌  being less
than or equal to ℚ𝑞[𝑌 ] is 𝑞:

ℙ[𝑌 ≤ ℚ𝑞[𝑌 ]] = 𝑞. (5)

Conditional quantile ℚ𝑞[𝑌 |𝑋]: The generalization of the quantile ℚ𝑞[𝑌 ] to the conditional
case is straightforward; it’s defined as the inverse of the conditional CDF:

ℚ𝑞[𝑌 |𝑋] ≔ ℱ−1
𝑌 |𝑋(𝑞) = inf{𝑦 | ℱ𝑌 |𝑋(𝑦) ≥ 𝑞}, (6)

where ℱ𝑌 |𝑋(𝑦) ≔ ℙ[𝑌 ≤ 𝑦|𝑋] is the conditional CDF defined via the conditional PDF
𝒻𝑌 |𝑋(𝑦) ≡ 𝒻𝑌 (𝑦|𝑋) (continuous case) or PMF 𝓅𝑌 |𝑋(𝑦) ≡ 𝓅𝑌 (𝑦|𝑋) (discrete case).

The meaning of the conditional quantile ℚ𝑞[𝑌 |𝑋] is that it is the value of 𝑌  such that the
probability of 𝑌  being less than or equal to ℚ𝑞[𝑌 |𝑋] given 𝑋 is 𝑞:

ℙ[ 𝑌 ≤ ℚ𝑞[𝑌 |𝑋] | 𝑋 ] = 𝑞. (7)



2 Quantile loss ℒ𝑞

Check-loss: Consider an asymmetric loss function parameterized by 𝑞 ∈ (0, 1):
This loss function is also called the pinball
loss and quantile loss (more on this below)ℒ𝑞(𝜀) := {𝑞 ⋅ 𝜀 𝜀 ≥ 0

−(1 − 𝑞) ⋅ 𝜀 𝜀 < 0

= 𝜀 ⋅ 𝑞 ⋅ ⟦𝜀 ≥ 0⟧ − 𝜀 ⋅ (1 − 𝑞) ⋅ ⟦𝜀 ≤ 0⟧,
(8)

Strictly speaking, this is an estimation of
the error: 𝜀 ≔ 𝑦 − 𝑦; for different estima�
tions of 𝑦, there are different 𝜀

where 𝜀 ≔ 𝑦 − 𝑦 is the error term (residual) and 𝑦 is the prediction of a regression model.
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1a: Check loss ℒ0.25(𝜀)
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1b: Check loss ℒ0.5(𝜀)
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1c: Check loss ℒ0.75(𝜀)

Constant model: Let’s first consider the simplest case, where we look for 𝑎∗ in the family of
all constant models 𝑎∗ ∈ {𝑎 | 𝑎 = const}.

For a pair (𝒙, 𝑦) taken from the joint dis�
tribution 𝒻(𝒙, 𝑦), a function 𝑦(𝒙) = 𝑎∗(𝒙)
that minimizes ℛ(𝑎 = 𝑎∗) can be found by
minimizing ℛ(𝑎):
ℛ(𝑎) ≔ 𝔼(𝒙,𝑦)∼𝒻(𝒙,𝑦)[ℒ𝑞(𝑎(𝒙), 𝑦)]

= 𝔼(𝒙,𝑦)∼𝒻(𝒙,𝑦)[ℒ𝑞(𝑦 − 𝑎(𝒙))]

= ∫ ℒ𝑞(𝑦 − 𝑎(𝒙)) ⋅ 𝒻(𝒙, 𝑦) ⋅ d𝒙 d𝑦

= ∫ ℒ𝑞(𝑦 − 𝑎(𝒙)) ⋅ dℱ(𝒙, 𝑦) → min
𝑎

The empirical risk (expected check�loss) can be expressed as:

ℛ(𝑎) = ∫ ℒ𝑞(𝜀 = 𝑦 − 𝑎) dℱ(𝒙, 𝑦) 𝑎(𝒙) → 𝑎 = const

= ∫ ℒ𝑞(𝜀 = 𝑦 − 𝑎) dℱ(𝑦) as 𝑎 is not a function of 𝒙

= ∫
𝑦−𝑎≥0

ℒ𝑞(𝑦 − 𝑎) dℱ(𝑦) + ∫
𝑦−𝑎<0

ℒ𝑞(𝑦 − 𝑎) dℱ(𝑦) nonoverlapping regions:𝜀 ≥ 0 and 𝜀 < 0

= ∫
𝑦≥𝑎

(𝑦 − 𝑎) ⋅ 𝑞 dℱ(𝑦) − ∫
𝑦<𝑎

(𝑦 − 𝑎) ⋅ (1 − 𝑞) dℱ(𝑦) → min
𝑎

expand ℒ𝑞(𝜀) according to (8)

(9)

Risk minimization: The integral is split at 𝑎 = 𝑎∗ into two independent regions: (−∞..𝑎∗)
and [𝑎∗.. + ∞). By differentiating both integrals with respect to 𝑎, we can find 𝑎∗:

𝜕
𝜕𝑎

ℛ(𝑎) = 𝑞 ⋅ ∫
𝑦≥𝑎

𝜕
𝜕𝑎

(𝑦 − 𝑎) dℱ(𝑦) −(1 − 𝑞) ⋅ ∫
𝑦<𝑎

𝜕
𝜕𝑎

(𝑦 − 𝑎) dℱ(𝑦) constants

= −𝑞 ⋅ ∫
+∞

𝑦=𝑎∗

dℱ(𝑦) +(1 − 𝑞) ⋅ ∫
𝑎∗

𝑦=−∞
dℱ(𝑦) dℱ(𝑦) = 𝒻(𝑦) d𝑦

= −𝑞 ⋅ (1 − ℱ𝑌 (𝑎)) + (1 − 𝑞) ⋅ ℱ𝑌 (𝑎) = −𝑞 + ℱ𝑌 (𝑎) ℱ𝑌 (𝑎) ≡ ℱ(𝑌 = 𝑎)

(10)

At the extreme point 𝑎 = 𝑎∗, the derivative of the risk is zero:

−𝑞 + ℱ𝑌 (𝑎∗) = 0. (11)

Thus, the optimal constant model 𝑎∗ is the 𝑞�quantile of the random variable 𝑌 :

𝑎∗ = ℱ−1
𝑌 (𝑞) = ℚ𝑞[𝑌 ]. (12)

Implications: We assumed that 𝑎 is a constant function of 𝒙 and derived the optimal constant
model 𝑦(𝒙) = 𝑎∗ that minimizes the empirical risk (expected check�loss) ℛ(𝑎). Notably, if we
differentiate ℛ(𝑎) with respect to any general function 𝑎(𝒙), the result remains the same.

Minimizing the check loss ℒ𝑞(𝜀) for a regression model 𝑦(𝒙) is equivalent to finding the 𝑞�
quantile of the random variable 𝑌 . Therefore, the algorithm 𝑎∗ derived from solving the min�
imization problem ℛ = 𝔼[ℒ𝑞] → min effectively predicts the 𝑞�quantile of 𝑌 .

Some implications of minimizing (8):

✴ 𝔼[𝑌 ] = arg min
𝜽

∑
𝒙∈𝑋ℓ

{𝑦(𝒙) − 𝑦(𝒙|𝜽)}2

✴ med 𝑌 = arg min
𝜽

∑
𝒙∈𝑋ℓ

|𝑦(𝒙) − 𝑦(𝒙|𝜽)|

✴ ℚ𝑞[𝑌 ] = arg min
𝜽

∑
𝒙∈𝑋ℓ

ℒ𝑞(𝑦(𝒙) −

𝑦(𝒙|𝜽))

Quantile parameter 𝑞: By using the check loss ℒ𝑞(𝜀), we can train a regression model 𝑦𝑞(𝒙)
that predicts the 𝑞�quantile of the random variable 𝑌  given the input 𝒙:

𝑦𝑞(𝒙) = ℚ𝑞[𝑌 |𝑋 = 𝒙], (13)

where 𝑦𝑞 depends both on hyperparameter 𝑞 and on the input 𝒙. This means that pre-
dictions ̂𝑦𝑞(𝒙) are different for different values of 𝑞.

Likewise, the error term (residual) depends on 𝑞:

𝜀𝑞(𝒙) = ℚ𝑞[𝑌 |𝑋 = 𝒙] − 𝑦(𝒙) = 𝑦𝑞 − 𝑦, (14)

and the check loss in (8) is actually ℒ𝑞(𝜀) ≡ ℒ𝑞(𝜀𝑞).



3 Expectation 𝔼 and median ℚ1/2

Minimization of MSE: The expectation 𝔼[𝑌 ] is the average value of a random variable 𝑌 . It
can be found by minimizing quadratic loss (MSE):

Differentiating the quadratic loss with re�
spect to 𝑎 gives:
𝜕
𝜕𝑎

𝔼[(𝑌 − 𝑎(𝑋))2 | 𝑋 = 𝒙∗]

= 𝜕
𝜕𝑎

𝔼[𝑌 2 − 2𝑌 𝑎(𝑋) + 𝑎(𝑋)2 | 𝑋 = 𝒙∗]

= 𝔼[−2𝑌 + 2𝑎(𝑋) | 𝑋 = 𝒙∗]
= −2𝔼[𝑌 | 𝑋 = 𝒙∗] + 2𝑎(𝒙∗) = 0

Rearranging gives:
𝑎(𝒙∗) = 𝔼[𝑌 |𝑋 = 𝒙∗]

𝔼[𝑌 |𝑋 = 𝒙∗] = arg min
𝑎

𝔼[(𝑌 − 𝑎(𝑋))2 | 𝑋 = 𝒙∗], (15)

which holds for both conditional 𝔼[𝑌 |𝑋] and unconditional 𝔼[𝑌 ] expectations.

The algorithm 𝑎∗ that minimizes the average quadratic loss has the lowest MSE among all
possible estimators and sometimes is called the minimum mean squared error (MMSE) esti�
mator, which is more commonly known as the least squares (LS) estimator.

In other words, minimization of quadratic loss is one of (many) possible ways to find
a good model 𝑎∗. During training, this model learns how to predict conditional expectation
𝔼[𝑌 |𝑋 = 𝒙∗] for a given 𝒙∗, then we use it to predict the expectation 𝔼[𝑌 |𝑋 = 𝒙′] for previ�
ously unseen data points 𝒙′.

This estimator has good theoretical guarantees (e.g., unbiasedness, minimum variance, etc.
under certain conditions) and because of that is the first choice for most regression problems.

Minimization of MAE: An alternative estimator 𝑎 is obtained when instead of minimizing
the quadratic term 𝜀2, we replace it with absolute difference |𝜀|, which is equivalent to min�
imizing mean absolute error (MAE). Interestingly, this gives us the median of the random
variable 𝑌 :

Given training data (𝒙∗, 𝑦∗) ∈ (𝑋, 𝑌 )ℓ, the
empirical estimation according to (15) and
(16) can be expressed as:

ℛ(𝑎) = 1
ℓ

⋅ ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

ℒ(𝑦∗ − 𝑎(𝒙∗))⏟⏟⏟⏟⏟⏟⏟
(𝑌 −𝑎(𝑋))2 | 𝑋=𝒙∗

or
|𝑌 −𝑎(𝑋)| | 𝑋=𝒙∗

→ min
𝑎

.

ℚ1/2[𝑌 |𝑋 = 𝒙∗] = arg min
𝑎

𝔼[|𝑌 − 𝑎(𝑋)| | 𝑋 = 𝒙∗] (16)

Indeed, MAE is directly connected to the quantile loss ℒ𝑞(𝜀). For 𝑞 = 1/2, the quantile loss
is simply the absolute value of the error 𝜀 (we ignore 1/2 factor):

ℒ1/2(𝜀) = {1/2 ⋅ 𝜀 𝜀 ≥ 0
−1/2 ⋅ 𝜀 𝜀 < 0 = |𝜀|

2
(17)

This model is also referred to as the Least
Absolute Deviations (LAD) estimator.

For 𝑞 = 1/2, the quantile ℚ1/2[𝑌 ] corresponds to the value 𝑦∗ such that ℙ[𝑌 ≤ 𝑦∗] = 1/2; i.e.,
the value 𝑦∗ cuts the distribution of 𝑌  in half. This is what the median (𝑄1/2) of a random
variable 𝑌  is.

𝒩(𝜇 = 0, 𝜎 = 1)
Laplace(𝜇 = 0, 𝑏 = 1)
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Figure 2: PDF of standard Normal and
Laplace distributions. Laplace has heavier

tails.

Laplace distribution: Quadratic loss is derived from assuming a Gaussian distribution of 𝑌 .
Formally, absolute loss comes from assuming a Laplace distribution of 𝑌 :

Median is more robust to outliers than
mean:

✴ In an ordered sample {𝑦1, …, 𝑦ℓ},
adding an outlier 𝑦′ shifts the mean
proportionally to its magnitude:

Δ𝔼[𝑌 ] = 𝑦′

ℓ + 1
.

✴ In the worst case an extreme outlier
𝑦′ ≪ 𝑦1 or 𝑦′ ≫ 𝑦ℓ can only shift the
median to the adjacent element:

𝑦(ℓ/2−1) − 𝑦(ℓ/2) ≤ Δℚ1/2[𝑌 ] ≤ 𝑦(ℓ/2+1) − 𝑦(ℓ/2).

𝒻𝑌 (𝑦) = 1
2𝑏

⋅ 𝑒− |𝑦−𝜇|
𝑏 , (18)

where 𝑏 is the scale parameter and 𝜇 is the mean. As the Laplace distribution is symmetric,
the mean 𝔼[𝑌 ] is equal to the median ℚ1/2[𝑌 ].

Likelihood: Assuming observations (𝒙∗, 𝑦∗) are i.i.d. and algorithm 𝑎 predicts the conditional
mean 𝜇 = 𝔼[𝑌 |𝑋 = 𝒙∗] = ℚ1/2[𝑌 |𝑋 = 𝒙∗], the likelihood function is given by:

𝕃 = ∏
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

𝑓𝑌 (𝑦∗|𝒙∗) = ∏
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

1
2𝑏

⋅ 𝑒−|𝑦∗−𝑎(𝒙∗)|/𝑏, (19)

Maximizing the likelihood function is equivalent to minimizing MAE:

log 𝕃 = ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

(− log 2𝑏 − |𝑦∗ − 𝑎(𝒙∗)|
𝑏

)

= −1
𝑏

∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

|𝑦∗ − 𝑎(𝒙∗)|
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ⋅ MAE

− ℓ ⋅ log 2𝑏⏟
const

→ max
𝑎

(20)

Measures of central tendency: Expectation 𝔼[𝑌 ] and median ℚ1/2[𝑌 ] are two distinct mea�
sures of central tendency for a random variable 𝑌 . In some cases, they are equal, but in gen�
eral they are not. This distinction leads to two different regression models:

Quantile regression is not limited to 𝑞 =
1/2; we can construct a regression model
for any conditional quantile ℚ𝑞[𝑌 |𝑋]
where 𝑞 is a hyperparameter



✴ In ordinary least squares (LS), we predict
the expected value of a random variable:

𝑦(𝒙) = 𝔼[𝑌 |𝑋 = 𝒙]. (21)

✴ In median regression, we build a model
that predicts the conditional median:

𝑦(𝒙) = ℚ1/2[𝑌 |𝑋 = 𝒙]. (22)



4 Quantile regression
Quantile regression was introduced by
Roger Koenker and Gilbert Bassett in
(Koenker & Bassett, 1978).

For a short overview and examples see
(Koenker & Hallock, 2001) and (Koenker,
2005) for details.

Probabilistic model: Suppose the distribution of the data (𝒙, 𝑦) is modeled as a joint distrib�
ution 𝒻(𝒙, 𝑦). Our goal is to predict the quantile ℚ𝑞[𝑌 ] = (⋅)(𝒙) for a given 𝒙, i.e., to predict
the conditional quantile ℚ𝑞[𝑌 |𝑋 = 𝒙].

Optimization problem: The empirical risk is defined as the average quantile loss (8) over the
distribution 𝒻(𝒙, 𝑦). By minimizing the empirical risk, we can find the optimal model 𝑎∗(𝒙)
that predicts the quantile ℚ𝑞[𝑌 |𝑋 = 𝒙]:

𝑎∗(𝒙) = arg min
𝑎

𝔼(𝒙,𝑦)∼𝒻(𝒙,𝑦)[ℒ𝑞(𝑦 − 𝑎(𝒙))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℛ(𝑎)

. (23)

Practical reformulation: From the theoretical expression of the empirical risk, we can derive
a practical reformulation of the quantile regression problem.

In LS regression, only one prediction
𝑦(𝒙) = 𝔼[𝑌 |𝑋 = 𝒙] exists, with a single
residual 𝜀(𝒙) ≔ 𝑦(𝒙) − 𝑦(𝒙).

In quantile regression, 𝑦𝑞(𝒙) is parame�
terized by 𝑞, producing multiple possible
predictions ℚ𝑞[𝑌 |𝑋 = 𝒙] for the same ran�
dom variable, with corresponding residuals
𝜀𝑞(𝒙∗) ≔ 𝑦𝑞(𝒙∗) − 𝑦(𝒙∗)

For a specific pair (𝒙∗, 𝑦∗) drawn from the joint distribution 𝒻(𝒙, 𝑦) represented by a training
set (𝑋, 𝑌 )ℓ, the empirical risk can be expressed via the check loss (8):

ℛ(𝑎) = 1
ℓ

⋅ ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

ℒ𝑞(𝑦∗ − 𝑎(𝒙∗)) → min
𝑎

. (24)

The model 𝑎(𝒙) ≡ 𝑎(𝒙|𝜽; 𝑞) can be any general regression model supporting custom loss func�
tions or the quantile loss ℒ𝑞 specifically.

Linear quantile regression: The condi�
tional quantile ℚ𝑞[𝑌 |𝑋] can be modeled as
a linear function of predictors 𝒙:
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Figure 3: Linear quantile regression for
non�normaly distributed noise

ℚ𝑞[𝑌 |𝑋 = 𝒙] = ⟨𝒙, 𝜷⟩, 𝛽𝑗 ≡ 𝛽𝑗(𝑞),(25)

where 𝜷(𝑞) is a vector of regression coeffi�
cients, and 𝛽𝑗(𝑞) = 𝛽𝑗|𝑞 ∈ ℝ are regression
coefficients for the feature 𝒙𝑗 and a prede�
fined hyperparameter 𝑞. Coefficients 𝛽𝑗(𝑞)
are estimated by minimizing the empirical
risk:

ℛ(𝜷) = 1
ℓ

⋅ ∑
𝒙∈𝑋ℓ

ℒ𝑞(𝑦(𝒙) − ⟨𝒙, 𝜷⟩)

→ min
𝜷

.
(26)

Neural quantile regression: Neural net�
works inherently support custom loss func�
tions and can model conditional quantiles
ℚ𝑞[𝑌 |𝑋] as well (Figure 4). A model pre�
dicting conditional quantiles ℚ𝑞[𝑌 |𝑋] must
be trained with a quantile loss, which can
be easily implemented:
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Figure 4: Quantile regression performed by
a neural network

class QuantileLoss(L.LightningModule):
    def __init__(self, q: float):
        super().__init__()
        self.q = q

    def forward(self, y_pred, y_true):
        epsilon = y_true - y_pred
        return T.where(
            epsilon >= 0,
            self.q * epsilon,
            (self.q - 1) * epsilon,
        ).mean()

Gradient boosting quantile regression:
Quantile loss (8) is differentiable if 𝜀 ≠ 0:
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Figure 5: Quantile regression performed by
a gradient boosting model

𝜕
𝜕𝜀

ℒ𝑞(𝜀) = {𝑞 𝜀 > 0
−(1 − 𝑞) 𝜀 < 0 , (27)

thus, gradient boosting can approximate
the quantile function ℚ𝑞[𝑌 |𝑋] to handle
non�linear dependencies between features
and quantiles (Figure 5).

Ensemble models: Multiple base algo�
rithms 𝑎𝑡(𝒙) can be combined to create an
ensemble model

𝐴(𝒙) = 1
𝑇

⋅ ∑
𝑇

𝑡=1
𝑎𝑡(𝒙). (28)

If each base algorithm 𝑎𝑡(𝒙) is trained to
predict quantiles ℚ𝑞[𝑌 |𝑋], the ensemble
𝐴(𝒙) will estimate the expectation of the
quantile 𝔼[ℚ𝑞[𝑌 |𝑋]].



5 Convergence and reliability of quantile regression parameters

Linear quantile regression: For linear quantile regression (25), the conditional quantile
ℚ𝑞[𝑌 |𝑋] is modeled as a linear function of predictors 𝒙. The theoretical properties of linear
quantile parameters 𝜷(𝑞) such as convergence and variance can be derived, though the analy�
sis is more complex than for traditional Gaussian regression.

Parameter expectation: All regression coefficients 𝛽𝑗 = 𝛽𝑗(𝑞) are functions of 𝑞. Under ap�
propriate conditions (independent observations with finite second moments), the asymptotic
distribution of the quantile regression estimator 𝜷(𝑞) is unbiased:

𝜷(𝑞) → 𝜷(𝑞), (29)

i.e., theoretically the estimator 𝜷(𝑞) converges to the expected value of the parameter 𝜷(𝑞)
as the sample size ℓ approaches infinity:

𝜷(𝑞) → 𝔼[𝜷(𝑞)]). (30)

Parameter variance: The estimator 𝜷(𝑞) is asymptotically normally distributed with variance
and mean 𝜷(𝑞) = 𝔼[𝜷(𝑞)] according to (30)

𝔻[𝜷(𝑞)] → 1
ℓ⏟
I

⋅ 𝑞 ⋅ (1 − 𝑞)⏟⏟⏟⏟⏟
II

⋅ 𝐷−1Ω𝐷−1⏟⏟⏟⏟⏟
III

. (31)

The variance in (31) depends on three terms:

1. The 1st multiplier determines the convergence rate of the estimator 𝜷(𝑞) as a function of
the sample size ℓ; the larger the sample size, the smaller the variance.

2. The 2nd multiplier depends on the quantile 𝑞. As 𝑞 approaches the tails (0 or 1), this term
decreases, which would seemingly lower the variance. It reduces variance if isolated, how�
ever, this is not the primary contributor to overall variance.
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Figure 6:  𝑞 ⋅ (1 − 𝑞) term in (31) reaches
its maximum at 𝑞 = 0.5

1. The 3rd multiplier is the sandwich variance estimator, which depends on both the esti�
mated parameters 𝜷(𝑞) and the robust variance matrix Ω. Typical formulations include:

𝐷(𝑦𝑞) = 1
ℓ

⋅ ∑
𝒙∈𝑋ℓ

𝑓𝑌 |𝑋(𝑦𝑞(𝒙)) ⋅ 𝒙𝒙𝖳 (32)

Ω̂ = 1
ℓ

⋅ ∑
𝒙∈𝑋ℓ

(𝑞 − ⟦𝑦(𝒙) ≤ 𝑦𝑞(𝒙)⟧) ⋅ 𝒙𝒙𝖳 (33)

Consequently, the variance of estimated parameters ̂𝜷(𝑞) increases as 𝑞 approaches
0 or 1. In practice, predictions near the median are typically more precise, while predictions
for extreme quantiles (e.g., 0.01 or 0.99) are less reliable.

While 𝑞 ⋅ (1 − 𝑞) decreases near the tails, the sandwich term 𝐷−1Ω𝐷−1 becomes poorly estimated
and tends to dominate.

Bad statistical guarantee: While ordinary least squares (OLS) estimates benefit from the
Gauss�Markov theorem, which establishes OLS as the best linear unbiased estimator (BLUE)
under classical assumptions, quantile regression follows different asymptotic properties.

Quantile regression estimators remain unbiased and consistent, but their variance behavior is
more complex. As shown in equation (31), the variance depends on both the quantile level 𝑞
and the underlying data distribution through the sandwich estimator term 𝐷−1Ω𝐷−1.

In practice, quantile regression estimates exhibit higher statistical variability than OLS esti�
mates, particularly for extreme quantiles (e.g., 𝑞 < 0.1 or 𝑞 > 0.9). This occurs because:

1. The sparsity of data in the tails leads to less reliable sandwich term estimation
2. The conditional density at extreme quantiles becomes more difficult to estimate accurately
3. The effective sample size for determining extreme quantiles is effectively reduced



This statistical efficiency trade�off is a necessary cost of gaining robustness to outliers and
insights into the complete conditional distribution.

The variance of the quantile regression estimator is larger than that of OLS, especially for extreme
quantiles.



6 Robustness of quantile regression

Non-normality (skew, heavy tails, multimodality): Quantile regression models conditional
quantiles, capturing skewed or heavy�tailed distributions without relying on normality
assumptions. OLS assumes normality and may produce misleading results when this as�
sumption is violated.
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Heteroscedasticity: Quantile regression does not assume homoscedasticity (constant vari�
ance). Instead, it models different parts of the conditional distribution independently, allow�
ing for varying spread (e.g., wider or narrower intervals) across predictors. OLS assumes ho�
moscedasticity (or equal weight of all observations).

Robustness to outliers and noise: By focusing on quantiles rather than the mean, quantile
regression reduces sensitivity to random noise and outliers, emphasizing specific distributional
trends. Quantile regression also does not assume any specific noise distribution. In
OLS, a few outliers can have a pronounced effect on parameter estimates.

Censoring: Censoring arises when the response variable 𝑦 is not fully observed. For instance,
in clinical trials, the exact value of 𝑦 may be unavailable for some patients. If a patient exits
a longitudinal study, we only know they survived up to time 𝑦, but their true survival time
might be much longer (Figure 7).

0 5 10
time 𝑦, years

Figure 7:  Time�to�death plot from the
start of a clinical trial. Circles repre�
sent patients whose exact time�to�death
is known, while crosses represent patients

who withdrew from the study.

In standard Gaussian regression, censoring results in a bias in estimates since observations
are truncated. Quantile regression allows to model different quantiles 𝑞 of the distribution:
some areas of the distribution may not be affected by censoring, while others are. By choosing
appropriate quantiles, we can obtain reliable estimates even in the presence of censoring.

However, in general it’s better to experiment with different losses and other models, that work
with censoring implicitly.



Invariance: Quantile regression is invariant to monotonic transformations of 𝑦 like log�
arithm or square root. In OLS this is not the case, although transformations are sometimes
used to normalize data.



7 Interpretation of linear quantile coefficients 𝛽𝑗(𝑞)

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

100
150
200
250
300

𝛽 i
nt
er
ce
pt

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

−20

−10

0

10

20

𝛽 g
ro
up
_i
nd
in
av
ir

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

−1

0

1

𝛽 a
ge

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

−0.2

0.0

0.2

𝛽 c
d4
_c
el
l_
co
un
t

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

−40

−20

0

20

40

𝛽 r
ac
e_
hi
sp
an
ic

0.0 0.2 0.4 0.6 0.8 1.0
quantile 𝑞

−40

−20

0

20

40

𝛽 r
ac
e_
bl
ac
k

Figure 8:  Quantile regression coefficients
for ACTG 320 dataset

Impact on target variable: Quantile regression coefficients 𝛽𝑗(𝑞) represent the impact of a
unit change in predictor 𝒙𝑗 on the response variable at specific quantiles. Unlike OLS coeffi�
cients, they capture how features influence different parts of the target distribution.

By examining how 𝛽𝑗(𝑞) varies across quantile levels, we can guess how predictors affect vari�
ous segments of the conditional distribution, revealing effects that are not directly observable
in standard regression.

Data: The ACTG 320 clinical trial, initiated in 1997 by Merck, was designed to evaluate the
effectiveness of the antiretroviral drug indinavir when used in a triple�drug regimen compared
to a standard two�drug treatment for HIV patients.

Variable Description

time

(target)
Follow�up time to AIDS progression or death (in days). Represents the

time from enrollment to the event (end of study or death).

age Age of the patient at the time of enrollment (in years).

cd4_cell_count Baseline CD4 T�cell count (cells/mL), a key indicator of immune function.

race_* Indicator variables representing the patient’s race.

group_* Indicator variables representing the treatment group.

Table 1:  ACTG 320 dataset features (simplified)

The associated dataset contains aprox. 1,150 records of HIV�infected patients who were ran�
domized to receive either the novel triple�drug regimen or the conventional two�drug therapy.

Quantile regression: The target variable is time, representing the follow�up duration. Linear
quantile regression

ℚ𝑞[𝑌 |𝑋] = ∑
𝑗

𝛽𝑗 ⋅ 𝒙𝑗, 𝛽𝑗 ≡ 𝛽𝑗(𝑞) (34)

was used to estimate the impact of various linear predictors 𝒙𝑗 from Table 1 on the time 𝑦 to
AIDS progression or death.

Quantile regression coefficients 𝛽𝑗(𝑞) as functions of quantile 𝑞 are plotted in Figure 8. Low
𝑞 values represent individuals who progressed to AIDS or died quickly, while high 𝑞 values
correspond to individuals with longer survival times.

Check (Koenker & Hallock, 2001) for more
examples.

Baseline estimate: Baseline survival time is estimated by the model intercept (Figure 8a),
e.g., median intercept 𝛽intercept(𝑞 = 1/2) is approximately 240 days. Note that the intercept
would be the median survival time if all other predictors were zero, in our case, they are not.

Reliability of coefficients: For 𝑞 ≈ 0.5, the estimates are most reliable and often close to the
OLS estimates. Extreme quantiles are estimated at tails where data is sparse, leading to higher
variance 𝔻[𝛽𝑗] and less reliable estimates, as seen in the fluctuations in Figure 8e at both
tails. Quantiles 𝑞 < 0.1 and 𝑞 > 0.9 were not estimated at all.

Sign of quantile regression coefficients 𝛽𝑗(𝑞): The sign of 𝛽𝑗(𝑞) reflects the predictor 𝒙𝑗’s im�
pact on survival time 𝑦 at the 𝑞�quantile, i.e., ℚ𝑞[𝑌 ] ∝ 𝛽𝑗(𝑞) ⋅ Δ𝒙𝑗 at the 𝑞�quantile.

Consistently positive 𝛽𝑗(𝑞) across all 𝑞 suggest that the predictor 𝒙𝑗 has only positive contri�
butions to survival time 𝑦 for all individuals. For the indinavir group (Figure 8b), the positive
impact (in days) is greatest for short�survived patients (low 𝑞) and decreases for long�lived
patients (high 𝑞).

Likewise, consistently negative 𝛽𝑗(𝑞) across all 𝑞 suggest that the predictor 𝒙𝑗 has only nega�
tive contributions to survival time 𝑦 for all quantiles. AIDS patients generally have lower CD4
cell counts than healthy individuals, and the lower the CD4 cell count, the more pronounced
its negative contribution (Figure 8d) to survival time 𝑦.



8 Practical considerations

Targets: Median is sometimes more interpretable and a better measure of centrality than the
mean, particularly for skewed or multimodal data:

✴ Median salary or house price characterizes the central tendency of a distribution better
than the mean, which can be skewed by extreme values.

Parameters:

✴ Coefficients 𝛽 in linear quantile regression are noisier than in OLS and depend on quantile
𝑞, making them harder to interpret. The Gauss�Markov theorem ensuring convergence and
variance in OLS does not apply to quantile regression.

✴ Exact values of 𝛽 in OLS are interpretable, but in quantile regression, they are generally
not. In simple cases, they can be close to OLS coefficients and interpretable. However, when
quantile regression is applied to transformed data (e.g., log(𝑦)), coefficients remain invari�
ant, but their contribution to 𝑦′ = log(𝑦) becomes less obvious. For skewed data where
OLS fails, quantile regression coefficients differ significantly from OLS but may still be in�
terpretable.

Computational complexity: Quantile regression lacks a universal analytical solution and is
typically solved numerically. The quantile loss function from (8) combines two linear functions
separated at 𝜀 = 0. Residuals can be decomposed into positive and negative parts:

𝜀 = 𝜀+ − 𝜀−, where {𝜀+ ≔ max{0, 𝜀}
𝜀− ≔ − min{0, 𝜀}, (35)

Using this decomposition, the quantile loss can be expressed as:

ℒ𝑞(𝜀) = 𝑞 ⋅ 𝜀+ + (1 − 𝑞) ⋅ 𝜀−. (36)

This formulation leads to a constrained linear programming problem [(Koenker et al., 2018),
p.282]:

1
ℓ

∑
ℓ

𝑖=1
{𝑞 ⋅ 𝜀+

𝑖 + (1 − 𝑞) ⋅ 𝜀−
𝑖 } → min

𝜺+,𝜺−

s.t. 𝑦𝑖 − 𝑦𝑖 = 𝜀+
𝑖 − 𝜀−

𝑖 , 𝑖 = 1..ℓ,

𝜀+
𝑖 ≥ 0, 𝜀−

𝑖 ≥ 0, 𝑖 = 1..ℓ.

(37)

Solving this optimization problem is computationally more intensive than OLS’s closed�form
solution, particularly for large datasets or when estimating multiple quantiles simultaneously.

Extreme quantiles: Estimates for extreme quantiles (e.g., 𝑞 = 0.01 or 𝑞 = 0.99) are often less
reliable due to sparse data in distribution tails, resulting in higher variance as shown in the
parameter convergence section.

Complete picture of conditional distributions: Quantile regression allows modeling multi�
ple quantiles, providing a comprehensive view of how predictors affect the entire conditional
distribution of the response, not just its center. This reveals heterogeneous effects that OLS
cannot capture.



9 Goodness-of-fit

Bad metrics: Classical metrics (e.g., MAE, MSE, 𝑅2) evaluate predictions based on their dis�
tribution around the mean 𝔼[𝑌 ]. However, quantile regression focuses on other distribution
properties, intentionally ignoring the mean. As a result, classical metrics are not suitable for
evaluating quantile regression models.

In fact, MAE is equivalent to the mean
quantile loss for 𝑞 = 1/2, making it suit�
able for median regression specifically

For a model 𝑎(𝒙) ≡ 𝑦(𝒙):

✴ The total sum of squares is:

TSS ≔ ∑
𝒙∈𝑋ℓ

(𝑦(𝒙) − 𝔼[𝑌 |𝒙])2

✴ The explained sum of squares is:

ESS ≔ ∑
𝒙∈𝑋ℓ

(𝑦(𝒙) − 𝔼[𝑌 |𝒙])2

✴ The residual sum of squares is:

RSS ≔ ∑
𝒙∈𝑋ℓ

(𝑦(𝒙) − 𝑦(𝒙))2

For unbiased models, TSS = ESS + RSS,
which is used to derive (39).

Mean quantile loss: The simplest approach to evaluate quantile regression models is to use
the quantile loss ℒ𝑞 directly:

⟨ℒ𝑞⟩ ≔ 1
ℓ

⋅ ∑
(𝒙,𝑦)∈(𝑋,𝑌 )ℓ

ℒ𝑞(𝑦 − 𝑦𝑞(𝒙)), (38)

where 𝑦𝑞(𝒙) is the quantile regression model.

For two quantile regression models 𝑦𝑞 and 𝑦′
𝑞′ (e.g., for different quantiles, regularization,

or features), the model with the lower quantile loss better fits the data and is preferred. In
sklearn, this metric is implemented as sklearn.metrics.mean_pinball_loss.

𝑅1 metric: Another approach involves metrics specifically designed for quantile regression.
Classical 𝑅2 measures the proportion of variance explained by the model:

𝑅2 = ESS
TSS

⧴ 1 − RSS
TSS

, (39)

where RSS is the sum of squared residuals between the predicted and actual values, and TSS
is the squared difference between the actual values 𝑦(𝒙) and the mean ̄𝑦 = 𝔼[𝑌 ]. TSS can be
viewed as RSS for a very simple constant model 𝑦(𝒙) = ̄𝑦:

𝑅2 = 1 − RSS[𝑦]
RSS[ ̄𝑦]

, (40)

where RSS[𝑦] and RSS[ ̄𝑦] are the residual sum of squares for the actual (proposed) model 𝑦
and the mean constant (baseline) model ̄𝑦, respectively.

The choice of the baseline model is arbitrary, so a pseudo�𝑅2 metric can be used to compare RSS
of any two arbitrary models 𝑦 and 𝑦′.

For quantile regression, a similar metric can be defined ((Koenker & Machado, 1999), eq. 7).
For two quantile regression models 𝑦𝑞 and 𝑦′

𝑞′ and corresponding mean quantile losses ⟨ℒ𝑞[𝑦𝑞]⟩
and ⟨ℒ′

𝑞′[𝑦′
𝑞′]⟩ computed via (38), the analog of 𝑅2 is:

𝑅1 ≔ 1 −
⟨ℒ𝑞[𝑦𝑞]⟩
⟨ℒ′

𝑞′[𝑦′
𝑞′]⟩

, (41)

where 𝑦𝑞 and 𝑦′
𝑞′ are the proposed and baseline models, respectively. Usually, models are com�

pared for the same quantile 𝑞.

A straightforward choice for the baseline model 𝑦′
𝑞 is the empirical quantile value ℚ𝑞[𝑌 ] calcu�

lated from the training set. The difference in the upper index arises because in 𝑅2, quadratic
units (TSS, RSS, and ESS) are used, while in 𝑅1, linear units (quantile loss) are used, as seen
in (8).

Like the general definition of 𝑅2, which is not bound to [0, 1] and can be negative, the 𝑅1

metric can also be negative if the model 𝑦𝑞 is worse than the baseline model 𝑦′
𝑞. In sklearn,

this metric is implemented as sklearn.metrics.d2_pinball_score.

Ordered metrics: A quantile model can be evaluated on how well it preserves the order.
This is particularly important for risk modeling applications and ranking. For example, if a
patient 𝒙 died at 𝑦(𝒙) and another at 𝑦(𝒙′), where 𝑦(𝒙) < 𝑦(𝒙′), the model should predict
𝑦𝑞(𝒙) < 𝑦𝑞(𝒙′).

In (42), the numerator counts the number
of observation pairs where the model pre�
dicts the same order as the actual order.
The denominator counts the total number
of comparable observation pairs. Equation
(42) can also be extended to handle cen�
sored data.

The calculation can be optimized by sum�
ming over unique pairs 𝑖 = 1..ℓ and 𝑗 = 𝑖 +
1..ℓ, reducing redundancy.

The proportion of correctly ordered pairs is measured by the concordance index (C�index):



𝐶 ≔
∑ℓ

𝑖=1 ∑ℓ
𝑗=1⟦𝑦(𝒙𝑖) < 𝑦(𝒙𝑗)⟧ ⋅ ⟦𝑦𝑞(𝒙𝑖) < 𝑦𝑞(𝒙𝑗)⟧

∑ℓ
𝑖=1 ∑ℓ

𝑗=1⟦𝑦(𝒙𝑖) < 𝑦(𝒙𝑗)⟧
, (42)

The C�index ranges from 0.5 (random predictions) to 1 (perfect predictions).
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