
1 General concept of regularization

The regularization method traces back to
A.N. Tikhonov’s work in 1963, who pro!
posed it for solving ill!posed problems
where formal mathematical solutions are
meaningless.

A linear system 𝒚 = 𝑋𝜷 has no solution
when 𝑋 is singular (det 𝑋 = 0), rank!defi!
cient (rank 𝑋 < 𝑘), or when data contains
errors preventing 𝒚 = 𝑋𝜷 from being sat!
isfied:

‖𝑦 − 𝑋𝜷‖2
2 →

?
min

𝛽
.

Adding constraints on model parameters
𝜷 through a regularizer 𝑅(𝜷) term shrinks
the solution space, making it possible to
find (sometimes) a practically useful ap!
proximate solution:

‖𝑦 − 𝑋𝜷‖2
2 + 𝑅(𝜷) →

OK
min

𝛽
.

 Regularization is a technique that imposes constraints on model parameters to control the
solution space. By limiting where parameters can be found, it effectively shrinks the space of
possible solutions. This reduction in parameter flexibility not only enhances model generaliz!
ability but also helps prevent overfitting by focusing on simpler solutions.

The term derives from Latin “regula” (rule) and “regularis” (in accordance with rules), re!
flecting its role in establishing systematic constraints on model behavior.

Through these controlled parameter constraints and reduced solution space, regularization
helps create simpler, more robust models by reducing their sensitivity to noise in the train!
ing data.



2 Probabilistic interpretation of regularization

Probabilistic framework: Consider a joint distribution of data 𝒙 ∈ ℝ𝑘, 𝑦 ∈ ℝ and model’s pa!
rameters 𝜽 ∈ ℝ:

𝒙, 𝑦, 𝜽 ∼ 𝑋, 𝑌 , Θ. (1)

1. The prior distribution of 𝒙 is independent of parameters 𝜽 and can assumed to be uniform
and ignored in the model:

𝑋 ∼ 𝑓𝑋(𝒙|𝜽) ⧴ 𝑓𝑋(𝒙) ∼ 𝒰. (2)

2. The posterior distribution of responses 𝑦 depends on parameters 𝜽 and specific data point
𝒙′, following a semi!probabilistic model formalism. The model is specified by defining the
conditional distribution of responses ℙ[𝑦|𝒙 = 𝒙∗, 𝜽] given a specific 𝒙 = 𝒙∗ and model pa!
rameters 𝜽. When the parameters are fitted, we make predictions for new data points 𝒙′

by maximizing the probability of a response 𝑦 given 𝒙′:
Support of a random variable 𝑌  is the set
of all possible values 𝑦∗

1, 𝑦∗
2, … that 𝑌  can

take with non!zero probability:
supp 𝑌 = {𝑦∗

1, 𝑦∗
2, …}

𝑎𝜽(𝒙′) = arg max
𝑦∈ supp 𝑌

𝑓𝑌 (𝑦|𝒙 = 𝒙′, 𝜽 = 𝜽)⏟⏟⏟⏟⏟⏟⏟⏟⏟
model

. (3)

3. The prior distribution of parameters 𝜽 is assumed to be known and defined by the hyper!
parameter vector 𝜸:

𝑓Θ(𝜽) ⧴ 𝑓Θ(𝜽|𝜸) ∼ Θ(𝜸) (4)

Applying MAP: The joint distribution of data and parameters can be rewritten as a product
of conditional pdfs:

We omit random variables 𝑋, 𝑌 , Θ in the
pdf’s underscripts for brevity. Just look
at the arguments before the bar to under!
stand to which random variable the pdf
refers: e.g., 𝑓(𝑥, 𝑦|𝜃) means 𝑓𝑋,𝑌 (𝒙, 𝑦|𝜃).

ℙ[𝑦|𝑥, 𝜃] = ℙ[{𝑌 = 𝑦}|{𝑋 = 𝑥}, {Θ = 𝜃}]
= ℙ[{𝑌 = 𝑦}|{𝑋 = 𝑥}{Θ = 𝜃}]

= ℙ[{𝑌 = 𝑦}{𝑋 = 𝑥}{Θ = 𝜃}]
ℙ[{𝑋 = 𝑥}{Θ = 𝜃}]

= ℙ[𝑥, 𝑦, 𝜃]
ℙ[𝑥, 𝜃]

𝑓(𝒙, 𝑦, 𝜽) = 𝑓(𝑦|𝒙, 𝜽) ⋅ 𝑓(𝒙, 𝜽)
= 𝑓(𝑦|𝒙, 𝜽) ⋅ 𝑓(𝒙|𝜽) ⋅ 𝑓(𝜽|𝜸)
= 𝑓(𝑦|𝒙, 𝜽) ⋅ 𝑓(𝜽|𝜸)

(5)

As it was mentioned, the canceled prior distribution of data 𝑓(𝒙|𝜽) is independent of the
model parameters 𝜽. We ignore it (or assume uniform).

Still, we didn’t ignore the prior distribution of parameters 𝜽, which is 𝑓(𝜽|𝜸). Because of that,
it’s MAP (Maximum a Posteriori) estimation, not MLE (Maximum Likelihood Estimation).

A pdf 𝑓(𝑦|𝑥, 𝜃) becomes a likelihood func!
tion when we consider it as a function of
arguments behind the bar, e.g.
✴ ℎ(𝑦) ≔ 𝑓(𝑦|𝑥 = 𝑥∗, 𝜃 = 𝜃∗) is still a pdf

of 𝑦 given 𝑥 = 𝑥∗ and 𝜃 = 𝜃∗.
✴ 𝑔(𝜃) ≔ 𝑓(𝑦 = 𝑦∗|𝑥 = 𝑥∗, 𝜃) is already a

likelihood function of 𝜃 given 𝑥 = 𝑥∗

and 𝑦 = 𝑦∗.

Finding parameters: For specific training samples 𝑦∗, 𝒙∗ and predefined hyperparameters 𝜸∗,
we write the joint likelihood of data and model parameters and maximize it:

ℓ(𝜽) = log ∏
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

𝑓(𝑦 = 𝑦∗|𝒙 = 𝒙∗, 𝜽) ⋅ 𝑓(𝜽|𝜸 = 𝜸∗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
MAP

= ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

{log 𝑓(𝑦 = 𝑦∗|𝒙 = 𝒙∗, 𝜽) + log 𝑓(𝜽|𝜸 = 𝜸∗)}

= ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

log 𝑓(𝑦 = 𝑦∗|𝒙 = 𝒙∗, 𝜽)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
log-likelihood

+ 𝜆 ⋅ log 𝑓(𝜽|𝜸 = 𝜸∗)⏟⏟⏟⏟⏟⏟⏟⏟⏟
prior regularizer

, ) → max
𝜽

(6)

The second term is the regularizer, its strength is defined by constant 𝜆 and hyperparameters
𝜸. Regularizer narrows the space in which the parameters can be found. The more narrow the
space, the more constrained the model is.

After finding the parameter vector estimate 𝜽, predictions for a new data point 𝒙′ can be
made by substituting the estimate 𝜽 into the model 𝑓𝑌 (𝑦|𝒙 = 𝒙′, 𝜽 = 𝜽):

𝑎𝜽(𝒙′) = arg max
𝑦∈ supp 𝑌

𝑓𝑌 (𝑦|𝒙 = 𝒙′, 𝜽 = 𝜽) (7)

Loss-function: Probabilistic regularizer (6) can be rewritten as the empirical risk where it
becomes an additional loss function:

𝑅(𝜽) = ∑
𝒙∈𝑋ℓ

ℒ(𝒙)
⏟⏟⏟⏟⏟
data fitting

+ 𝜆 ⋅ ℒreg(𝜽)⏟
parameters

regularization 

→ min
𝜽

(8)



3 𝐿2-norm regularization (Tikhonov regularization)
On a privious step, we found the general form of the regularazer assuming prior distribution
of parameters 𝑓Θ(𝜽|𝜸):

𝑅(𝜽) = ∑
𝒙∈𝑋ℓ

ℒ(𝒙) + 𝜆 ⋅ ℒreg(𝜽) → min
𝜽

. (9)

Model:: Here we make specific choices of the prior distributions parameters 𝑓Θ(𝜽|𝜸) and
the data:

1. All parameters 𝜽 ⧴ 𝜷 are independent and linear, so the joint distribution is a product
of the individual distributions:

These distributions impose prior con!
straints on the model coefficients, effec!
tively reducing the solution space

𝑓Θ(𝜽 = 𝜷|𝜸) = ∏
𝑘

𝑗=1
𝑓(𝛽𝑗|𝜸) (10)

2. Each parameter 𝛽𝑗 follows a Gaussian distribution with two hyperparameters common for
all individual distributions: mean 𝛾1 ⧴ 𝜇 = 0 and standard deviation 𝛾2 ⧴ 𝜏 :

𝑓(𝛽𝑗|𝜸) ⧴ 𝑓(𝛽𝑗|𝜇, 𝜏) = 1√
2𝜋𝜏

𝑒−𝛽2
𝑗/2𝜏2 ∼ 𝑁(𝜇, 𝜏). (11)

3. The data is generated by a linear model with Gaussian noise 𝑁(0, 𝜎):
Both errors 𝜺 ∼ 𝑁(𝟎, 𝜎𝐼) and model’s pa!
rameters 𝛽 ∼ 𝑁(𝟎, 𝜏𝐼) follow multivariate
Gaussian distributions with zero mean and
different covariance matrices 𝜎𝐼 and 𝜏𝐼 re!
spectively.

Dimensions of vectors 𝜺 and 𝜷 are differ!
ent:

dim 𝜺 = ℓ, dim 𝜷 = 𝑘.
All corresponding distribution parameters
have appropriate dimensions:

dim 𝟎𝜺 = ℓ, dim 𝟎𝜷 = 𝑘,

dim 𝜎𝐼 = ℓ × ℓ, dim 𝜏𝐼 = 𝑘 × 𝑘.

𝑦(𝒙) = 𝛽𝖳 𝒙 + 𝜀(𝒙), 𝜀(𝒙) ∼ 𝑁(0, 𝜎). (12)

Applying MAP:

Here we denote pdf underscripts with let!
ters corresponding to random variables

 For any arbitrary model we can estimate the error term 𝜺 as difference between the predicted
𝒚 and the actual 𝒚 responses. The posterior distribution of parameters 𝜷:

𝑓𝜷(𝜷|𝜸, 𝜺 = 𝜺) =
𝑓𝜷,𝜸,𝜺(𝜷, 𝜸, 𝜺 = 𝜺)

𝑓𝜸,𝜺(𝜸, 𝜺 = 𝜺)

=
𝑓𝜺(𝜺 = 𝜺|𝜷, 𝜸) ⋅ 𝑓𝜷,𝜸(𝜷, 𝜸)

𝑓𝜸,𝜺(𝜸, 𝜺 = 𝜺)

=
𝑓𝜺(𝜺 = 𝜺|𝜷, 𝜸) ⋅ 𝑓𝜷(𝜷|𝜸) ⋅ 𝑓𝜸(𝜸)

𝑓𝜸,𝜺(𝜸, 𝜺 = 𝜺)

=
𝑓𝜺(𝜺 = 𝜺|𝜷) ⋅ 𝑓𝜷(𝜷|𝜸) ⋅ 𝑓𝜸(𝜸)

𝑓𝜸(𝜸) ⋅ 𝑓𝜺(𝜺 = 𝜺)
→ max

𝜷

(13)

As 𝑓𝜺(𝜺 = 𝜺) is independent of 𝜷, we cancel it out:

𝑓𝜀 (𝜺 = 𝜺|𝜷) ⋅ 𝑓𝜷(𝜷) → max𝜷. (14)

Independence: We applied MAP and wrote the optimization problem, now continue with
substituting the specific distributions:

𝑓𝜺(𝜺 = 𝜺|𝜷) = ∏
𝒙∗∈𝑋ℓ

𝑒−𝜀(𝒙=𝒙∗|𝜷)2/2𝜎2 (15)

The error estimates are directly related to the data:

𝜀(𝒙 = 𝒙∗|𝜷) = 𝑦(𝒙∗|𝜷) − 𝑦(𝒙∗) (16)

Let’s write the prior distribution of parameters:

𝑓𝜷(𝜷) = ∏
𝑘

𝑗=1
𝑒−

𝛽2
𝑗

2 𝜏2 (17)

The data distribution can be written through the error distribution:

𝑓𝑌 (𝒚 = 𝒚∗|𝜷) = 𝑓𝜺(𝜺 = 𝒚 − 𝒚∗|𝜷) (18)

Let’s write the posterior distribution of parameters:



𝑓𝜷(𝜷|𝜺 = 𝜺) ≔ ∏
𝒙∈𝑋ℓ

𝑒−𝜀 (𝒙|𝜷)2
2 𝜎2 ⋅ ∏

𝑘

𝑗=1
𝑒−

𝛽2
𝑗

2 𝜏2 (19)

Let’s write the likelihood function (log!loss):

ℓ(𝜺, 𝜷|𝑋) ≔ − ∑
𝒙∈𝑋ℓ

𝜀(𝒙|𝜷)2

2𝜎2 − ∑
𝑘

𝑗=1

𝛽2
𝑗

2𝜏2 → max
𝜷

(20)

Let’s rewrite it as empirical risk minimization:

𝑄(𝜷) = ∑
𝒙∈𝑋ℓ

(𝑦(𝒙) − 𝑦(𝒙))2 + 2𝜎2

2𝜏2 ∑
𝑘

𝑗=1
𝛽2

𝑗 → min
𝜷

(21)

𝑄(𝜷) = ‖𝒚 − 𝑋𝜷‖2
2 + 𝜆 ⋅ ‖𝜷‖2

2 → min
𝜷

(22)

In 𝐿1 regularization, everything is similar, but the errors are described by the Laplace distri!
bution.



4 𝐿1-norm regularization

𝑄(𝜷) = ‖𝒚 − 𝑋𝜷‖2
2 + 𝜆 ⋅ ‖𝜷‖1 → min

𝜷
(23)

Unlike 𝐿2 regularization, LASSO assumes model errors follow the Laplace distribution, char!
acterized by heavy tails and a sharp peak:

𝜀 ∼ 𝒻(𝜀|𝜇, 𝑏) = 1
2𝑏

exp −|𝜀 − 𝜇|
𝑏

(24)

Using MAP for parameter estimation:

𝑓𝜷(𝜷|𝜺 = 𝜺) =
𝑓𝜀(𝜺 = 𝜺|𝜷) ⋅ 𝑓𝜷(𝜷)

𝑓𝜺(𝜺 = 𝜺)

= ∏
𝒙∗∈𝑋ℓ

𝑒−𝜀(𝒙=𝒙∗|𝜷)2

2 𝜎2 ⋅ ∏
𝑘

𝑗=1

1
2𝑏

𝑒−
|𝛽𝑗|

𝑏

→ max
𝜷

(25)

Let’s write the likelihood function (log!loss):

ℓ(𝜺, 𝜷|𝑋) ≔ − ∑
𝒙∈𝑋ℓ

𝜀(𝒙|𝜷)2

2𝜎2 − ∑
𝑘

𝑗=1

|𝛽𝑗|
𝑏

− 𝑘 ⋅ ln 2𝑏 → max
𝜷

(26)

Let’s rewrite it as empirical risk minimization:

𝑄(𝜷) = ∑
𝒙∈𝑋ℓ

(𝑦(𝒙) − 𝑦(𝒙))2 + 2𝜎2

𝑏
∑

𝑘

𝑗=1
|𝛽𝑗| → min

𝜷
(27)



5 𝐿0 regularization



6 Geometric interpretation of regularization



7 Ridge, LASSO, and Elastic Net regression


	General concept of regularization
	Probabilistic interpretation of regularization
	Probabilistic framework
	Applying MAP
	Finding parameters
	Loss-function

	L2-norm regularization (Tikhonov regularization)
	Model:
	Applying MAP
	Independence

	L1-norm regularization
	L0 regularization
	Geometric interpretation of regularization
	Ridge, LASSO, and Elastic Net regression

