
1 Communication as an engineering problem

Communication: Information theory was originally developed to provide a theoretical frame�
work for addressing an engineering problem of communication. Formally, consider a scenario
where a sender wants to transmit a message, denoted as 𝜔, to a receiver. In information theory,
the semantic content of messages is irrelevant; the focus is solely on the engineering aspects
of transmission. Here, the message is treated as a sequence of symbols.

Symbols: Symbols are distinct, identifiable entities that form the alphabet used to represent
a message. For instance, the digits from 0 to 9 can be used to represent any integer number
(the message). Similarly, nodding or shaking one’s head can be considered symbols represent�
ing the messages “yes” and “no.” For hearing�impaired individuals, hand gestures are used as
symbols to communicate, with each gesture representing a specific symbol.

Encoding: The simplest symbolic system capable of transmitting information must have at
least two distinct symbols, such as “0” and “1.” Using this simple formal language, we can
encode basic messages.

A message about whether it will rain tomorrow can be encoded with just two symbols:
0 = [It will not rain tomorrow], 1 = [It will rain tomorrow].

The outcome of a coin flip can be encoded similarly:
0 = [The coin landed on tails], 1 = [The coin landed on heads].

Messages can be represented by the codes used for their encoding. More complex messages
can be encoded as sequences of symbols.

For four possible messages:
Ω = {

𝜔1 = [It will not rain tomorrow, and the coin landed on heads],
𝜔2 = [It will not rain tomorrow, and the coin landed on tails],
𝜔3 = [It will rain tomorrow, and the coin landed on tails],
𝜔4 = [It will rain tomorrow, and the coin landed on heads]

},
The following encoding can be used:

00 = 𝜔1, 01 = 𝜔2, 10 = 𝜔3, 11 = 𝜔4.

These binary sequences carry information. Importantly, there is no way to transmit this in�
formation in a more compact form; we need at least a sequence of length 2 binary symbols
to encode the weather and coin states. Thus, this code is optimal and cannot be further
compressed.



2 Bits

Uncertainty: A particular message 𝜔∗ can be considered successfully transmitted if and only
if the receiver can identify this specific message 𝜔∗ from the set of all possible messages 𝜔𝑖𝑛Ω.
The larger the set Ω is, the harder it is to select 𝜔∗ from the set of all possible messages.
Therefore, the larger Ω, the greater the uncertainty associated with determining the trans�
mitted message. Uncertainty is directly related to the number of possible messages.

Bits: Various encoding schemes can be used to transmit the same message. To abstract away
from the details of specific encodings and focus on the information content itself, we introduce
the concept of bits. A bit is the minimum amount of information required to eliminate uncer�
tainty between two possibilities. The sender must transmit at least 1 bit so that the receiver
can distinguish the sent message 𝜔∗ from a set of two possible messages Ω = {𝜔0, 𝜔1}.

If the set of all possible messages contains 𝑁 > 2 messages, each bit of information can be
used to eliminate half of the remaining possibilities.

Ω = {𝜔1, 𝜔2, 𝜔3, 𝜔4} (1)

0 = [𝜔∗ is in the first half of Ω], 1 = [𝜔∗ is in the second half of Ω]. (2)

✴ The first bit divides the set into two halves:

Ω = {
0

⏞𝜔1, 𝜔2 ,
1

⏞𝜔3, 𝜔4 } (3)

✴ The second bit further divides the set:

Ω = {
0

⏞𝜔1⏟
00

, 𝜔2⏟
01

,
1

⏞𝜔3⏟
10

, 𝜔4⏟
11

} (4)

Information: The amount of bits required to identify a specific message 𝜔 is called the infor�
mation content 𝐼(𝜔). The sender sends 𝐼(𝜔) bits of information by transmitting the message
𝜔, and the receiver receives 𝐼(𝜔) bits of information when decoding the message to identify 𝜔
from the set Ω.



3 Hartley function

Bits: When there are multiple possible outcomes, we can distinguish between them if we have
the necessary information. The minimal amount of information is 1 bit. By definition, each
bit of information distinguishes between 2 possibilities. For example, 1 bit of information is
required to unambiguously identify the sex of a child. The event:

𝐵 = {Masha gave birth to a boy} (5)

corresponds to exactly 1 bit of information, and the inverse event similarly corresponds to 1
bit of information:

𝐵̄ = {Masha gave birth to a girl} (6)

Additivity: For two independent and equally probable events:

𝐵 = {Masha gave birth to a boy}, 𝐺 = {Lena gave birth to a girl} (7)

we expect the total amount of information received when both events have occurred to be
additive:

𝐼(𝐴𝐵) = 𝐼(𝐴) + 𝐼(𝐵) (8)

Since the logarithm satisfies this property, the possible choice is:

log 𝑓(𝐴𝐵) = log 𝑓(𝐴) + log 𝑓(𝐵) (9)

Probability: The probability 𝑝 characterizes the frequency of an event. An event with a high
probability provides a small amount of information. For instance, the probability of the sunrise
is nearly one, so the information that there will be a sunrise tomorrow carries little value. In
contrast, the information that there will be no sunrise tomorrow conveys a significant amount
of information. Thus, the lower the probability, the more information is conveyed:

𝐼(𝐴) = 𝐼(ℙ[𝐴]) and 𝑝 ↑⇔ 𝐼 ↓ . (10)

The appropriate formula that satisfies these conditions is:

𝐼(𝑓(𝐴)) = log 1
ℙ[𝐴]

, 𝑓(𝐴) = ℙ(𝐴). (11)

𝐼(𝐴𝐵) = log 1
ℙ[𝐴]

+ log 1
ℙ[𝐵]

(12)

Inverse probability: The inverse probability 1
𝑝  represents the expected number of trials

needed to achieve one occurrence of an event with probability 𝑝. For example, if 𝑝 = 0.01,
the event occurs, on average, once every 100 trials.

Information content:

In 𝑘�valued logic, each 𝑘�valued digit (0, 1,
…, 𝑘 − 1) represents information:
✴ In binary logic, each digit is a bit (0

or 1).
✴ In ternary logic, each digit is a trit (0,

1, or 2).

 Information is the capacity to distinguish between possibilities. Each bit of information
distinguishes 2 possibilities, and it can assume 2 different values, 0 and 1. 𝑛 bits of information
distinguish 2𝑛 possibilities. Hence, the amount of information required to distinguish between
2𝑛 possibilities is 𝑛 bits.

If there are 𝑁  outcomes, each time you assign a bit value to an outcome, you divide all out�
comes into 2 sets corresponding to the bit values:

Ω = {𝜔 ∈ Ω | 𝜔's bit value = 0}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ω0

∪ {𝜔 ∈ Ω | 𝜔's bit value = 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ω1

(13)

Now, for any 𝜔, knowing the corresponding bit value allows you to determine whether 𝜔 ∈ Ω0
or 𝜔 ∈ Ω1, thereby halving the uncertainty.

Repeating this 𝐼 times, you partition Ω into 2𝐼 disjoint sets, or more precisely, min(2𝐼 , 𝑁), as
Ω contains only 𝑁  elements:

Ω = {𝜔1} ∪ {𝜔2}… ∪ {𝜔𝑁} (14)



Once the sets contain only one element, further bits do not provide additional meaningful
information. Therefore, the amount of information is proportional to the size of Ω. Each bit
splits Ω into 2 parts, and each subsequent bit continues dividing the sets into 2 parts. How�
ever, it is only meaningful to repeat these binary divisions up to log2 𝑁  times.

Thus, the exact number of bits needed to distinguish all outcomes is:

𝐼 = log2 𝑁 = log2
1
𝑝
. (15)



4 Self-information
Self�information, introduced by Claude Shannon, quantifies the amount of information or
“surprise” associated with the occurrence of an event. The key properties of Shannon’s self�
information are:

✴ An event with a probability of 100% is unsurprising and thus carries no information.

✴ Events that are less probable yield more information when they occur.

✴ For two independent events, the total information is the sum of their individual self�infor�
mations.

The self�information for an event 𝐴 is defined as:

𝐼(𝐴) ≔ lg2
1

ℙ[𝐴]
. (16)

For a random variable 𝑋 taking a specific value 𝑥 with probability ℙ[𝑋 = 𝑥], the self�infor�
mation is:

𝐼𝑋(𝑥) ≔ lg2
1

ℙ[𝑋 = 𝑥]
. (17)

Odds ratio: The odds of an event 𝐴 is defined as the difference in self�information (also known
as surprisal) between the event 𝐴 and its complement ̄𝐴:

Odds 𝐴 := 𝐼(𝐴) − 𝐼( ̄𝐴)

= log ℙ[𝐴]
1 − ℙ[𝐴]

.
(18)



5 Shannon entropy
Boltzmann distribution: maximizes
thermodynamic probability 𝑊  and pro�
vides the probability for each state, so
the Boltzmann formula defines a proba-
bility distribution:

𝑛𝑖
𝑁

= 𝑒−𝛽𝐸𝑖

∑𝑖 𝑒−𝛽𝐸𝑖
.

Shannon’s information entropy can be ap�
plied to this probability distribution:

𝑝𝑖 ≔ 𝑒−𝛽𝐸𝑖

𝑍
, 𝑍 ≔ ∑

𝑖
𝑒−𝛽𝐸𝑖 ,

𝐻 = ∑
𝑖

𝑝𝑖 ⋅ ln 𝑝𝑖

= ∑
𝑖

𝑒−𝛽𝐸𝑖

𝑍
⋅ (−𝛽𝐸𝑖 − ln 𝑍)

= −𝛽 ∑
𝑖

𝑒−𝛽𝐸𝑖

𝑍⏟
𝑝𝑖

⋅ 𝐸𝑖 − ln 𝑍 ⋅ ∑
𝑖

𝑒−𝛽𝐸𝑖

𝑍⏟⏟⏟⏟⏟
=1

= −𝛽⟨𝐸⟩ − ln 𝑍
As a result, we get statistical entropy ex�
pressed via the partition function:

𝑆stat = 𝑘𝐵 ⋅ 𝐻
The amount of information needed to en�
code the probability distribution by en�
ergy levels can be calculated via Shannon’s
formula. This amount of information di�
rectly corresponds to the statistical ther�
modynamic entropy with 𝑘𝐵 units, which
translates bits into energy per temperature
units.

Information associated with a probability distribution.: Information corresponds to the
amount of uncertainty: the more uncertain (less probable) an outcome is, the more informa�
tion it carries.

As for a single outcome 𝜔 ∈ Ω, we can define the information associated with the probability
distribution {ℙ[𝜔] | 𝜔 ∈ Ω}. Let it be the expected value of the self�information:

𝐻[ℙ, Ω] := ∑
𝜔∈Ω

ℙ[𝜔] ⋅ 𝐼(𝜔)

= ∑
𝜔∈Ω

ℙ[𝜔] ⋅ log2
1

ℙ[𝜔]
.

(19)

This quantity is known as the Shannon entropy, it can be interpreted as the average amount
of information produced by the probability distribution.

As a random variable 𝑋 induces its own probability distribution {ℙ[𝑋 = 𝑥] | 𝑥 ∈ supp(𝑋)},
the entropy can be defined specifically for the random variable:

𝐻(𝑋) := ∑
𝑥∈ supp(𝑋)

ℙ[𝑋 = 𝑥] ⋅ 𝐼(𝑋 = 𝑥)

= ∑
𝑥∈ supp(𝑋)

ℙ[𝑋 = 𝑥] ⋅ log2
1

ℙ[𝑋 = 𝑥]
,

(20)

which is equivalent to the distribution of the events {[𝑋 = 𝑥] | 𝑥 ∈ supp(𝑋)}.

Fair dice: induces the uniform distribution over the set of possible outcomes 𝑝1 = … = 𝑝6 = 1
6 .

We need exactly 𝐼 = log2 6 ≈ 2.58 bits to encode each outcome. All outcomes are equally probable,
so we need the same 𝐼 bits of information to encode any outcome on average.

On the other hand, when we roll a fair dice, we receive log2 6 bits of information from any outcome,
and on average we receive the entropy 𝐻 amount of information:

𝐻 = ∑
6

𝑖=1

1
6

⋅ log2
1
6

= log2
1
6

≈ 2.58 bits.

Conditional entropy: Entropy 𝐻 can be generalized to the conditional case. Suppose that we
have random variables 𝑋 and 𝑌 , with their (marginal) distributions ℙ[𝑋 = 𝑥] and ℙ[𝑌 = 𝑦]
and their joint distribution ℙ[𝑋 = 𝑥, 𝑌 = 𝑦].

Specific conditional entropy: can be trivially defined by replacing the probability ℙ[𝑋 = 𝑥]
with the conditional probability ℙ[𝑋 = 𝑥|𝑌 = 𝑦]:

𝐻(𝑋|𝑌 = 𝑦) := ∑
𝑥∈ supp 𝑋

ℙ[𝑋 = 𝑥|𝑌 = 𝑦] ⋅ log 1
ℙ[𝑋 = 𝑥|𝑌 = 𝑦]

. (21)

Conditional entropy: (non specific) is can be defined as the expected value of the specific
conditional entropy over all possible values of 𝑦 ∈ supp 𝑌 :

𝐻(𝑋|𝑌 ) := 𝔼𝑌 [𝐻(𝑋|𝑌 = 𝑦)]

= ∑
𝑦∈ supp 𝑌

ℙ[𝑌 = 𝑦] ⋅ 𝐻(𝑋|𝑌 = 𝑦) (22)
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