
Principal Component Analysis (PCA)

Problem. 
Сrumbs on the floor. Each data point is
represented by three coordinates 𝑥, 𝑦, 𝑧, but
𝑧 is always 0. Therefore, the data can be
represented by just two coordinates:

𝒇 =
(
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(𝑥

𝑦
0)
))
) →

𝐴
𝒑 = (𝑥

𝑦) →
𝐵

𝒇 =
(
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(𝑥

𝑦
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))
).

It is straightforward to find the linear trans�
formations 𝐴 and 𝐵:
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NB. In the example above:

✴ The last column of 𝐴 is arbitrary, so the
choice of transformations is not unique.

✴ 𝐴 and 𝐵 are related: 𝒇 = 𝐵𝐴𝒇 , thus
𝐵𝐴 = 𝐼 .

✴ Since 𝐴 and 𝐵 are non�square, they are
non�invertible, so 𝐴 = 𝐵−1 does not
hold.

✴ Principal Component Analysis (PCA) is a feature transformation method that converts
the original features 𝒇 into a new set of transformed features 𝒑, ensuring their linear
independence:

𝒇 =
(
((
(𝑓1

⋮
𝑓𝑘)

))
) → 𝒑 =

(
((
(𝑝1

⋮
𝑝𝑚)

))
), (1)

If the original features are linearly dependent, the data resides in a lower�dimensional
space, meaning 𝑚 < 𝑘. For clarity, we will assume 𝑚 < 𝑘 explicitly.

✴ The new representation 𝑝1, …, 𝑝𝑚 is constructed as a linear combination of the original
features 𝑓1, …, 𝑓𝑘:

𝑝𝑠 = ∑
𝑘

𝑗=1
𝛼𝑠,𝑗 ⋅ 𝑓𝑗, (2)

the coefficients 𝛼𝑠,𝑗 form the matrix 𝐴, which defines the linear transformation from 𝒇
to 𝒑.

✴ The new, usually lower�dimensional, representation 𝒑 must still be informative. This is
achieved by ensuring that 𝒑 can approximately restore the original features 𝒇 linearly
and with minimal error:

𝑓𝑗 = ∑
𝑚

𝑠=1
𝛽𝑗,𝑠 ⋅ 𝑝𝑠 ≈ 𝑓𝑗, (3)

the coefficients 𝛽𝑗,𝑠 form the matrix 𝐵, which defines the linear transformation from 𝒑
back to 𝒇 .

✴ The objective of PCA is to minimize the reconstruction error 𝒇 − 𝒇 by finding the op�
timal linear transformations 𝐴 : 𝒇 → 𝒑 and 𝐵 : 𝒑 → 𝒇 :

𝑅 = ∑
𝒙∈𝑋ℓ

‖𝒇 − 𝒇‖2 = ∑
𝒙∈𝑋ℓ

‖𝐵𝐴𝒇 − 𝒇‖2 → min
𝐴,𝐵

. (4)

Сrumbs on the table.. Now, the third co�
ordinate equals the table height ℎ = 1:

(
((
(𝑥

𝑦
1)
))
) →

𝐴
(𝑥

𝑦), (𝑥
𝑦) →

𝐵

(
((
(𝑥

𝑦
1)
))
)

Here, 𝐴 is the same as before, but no 𝐵 can
restore the original vector exactly.

Formally, if 𝐵 exists, we could write the sys�
tem of equations:

(
((
((

𝛽1,1
𝛽2,1
𝛽3,1

𝛽1,2
𝛽2,2
𝛽3,2)

))
))(𝑥

𝑦) =
(
((
(𝑥

𝑦
1)
))
) ⇒

{{
{
{{1𝑥 + 0𝑦 = 𝑥

0𝑥 + 1𝑦 = 𝑦
𝛽3,1𝑥 + 𝛽3,2𝑦 = 1

.

✴ The coefficients in the first two equations
are determined by the identities 𝑥 = 𝑥
and 𝑦 = 𝑦.

✴ The third equation cannot yield 1 for all
𝑥, 𝑦 since it lacks a bias term.

Approximate solution.. In the example
above, we could find 𝐵 as the pseudoinverse
𝐵 = 𝐴+ = (𝐴𝖳 𝐴)−1𝐴𝖳 , but:

✴ The original vector will only be restored
approximately, so 𝐴𝐵 ≈ 𝐼 .

✴ Since the choice of 𝐴 is arbitrary, the
choice of 𝐵 is also arbitrary. This free�
dom allows us to impose additional con�
straints on the transformations.

Linear Maps. Matrices 𝐴 (dimension reducer) and 𝐵 (dimension adder) are linear maps
that work oppositely: 𝐴 reduces the dimension of the original features 𝒇 to the dimension
of the principal components 𝒑, and 𝐵 restores, as closely as possible, the original features
from the principal components.

𝒇 =
(
((
(𝑓1

⋮
𝑓𝑘)

))
) →

𝐴
𝒑 =

(
((
(𝑝1

⋮
𝑝𝑚)

))
) →

𝐵
𝒇 =

(
((
((

𝑓1
⋮

𝑓𝑘)
))
)) (5)

This can be written as:

𝒑 = 𝐴𝒇, 𝒇 = 𝐵𝒑. (6)

Matrix Formulation. The feature matrix 𝐹  and the principal component matrix 𝑃  are
formed by stacking the row vectors 𝒇𝖳 = (𝑓1, …, 𝑓𝑘) and 𝒑𝖳 = (𝑝1, …, 𝑝𝑚):

𝐹 ≔

(
((
((

𝒇𝖳 
1
⋮

𝒇𝖳 
ℓ )

))
)), 𝑃 ≔

(
((
((

𝒑𝖳 
1
⋮

𝒑𝖳 
ℓ )

))
)) (7)

In matrix form, the linear maps 𝐴 and 𝐵 are applied as follows:

𝑃𝖳 = 𝐴𝐹𝖳 , 𝐹𝖳 = 𝐵𝑃𝖳 , (8)



or equivalently, by transposing:

𝑃 = 𝐹𝐴𝖳 , 𝐹 = 𝑃𝐵𝖳 . (9)

Substituting 𝑃  into 𝐹  yields the following equation:

𝐹 = 𝐹𝐴𝖳 𝐵𝖳 = 𝐹(𝐴𝐵)𝖳 , (10)

The approximation 𝐹  equals 𝐹  exactly if 𝐴𝐵 = 𝐼 . Ideally, 𝐴 would equal 𝐵−1, but in gen�
eral, 𝐴 and 𝐵 are non�square and therefore non�invertible.

Pseudoinverse matrix. 𝐴𝐵 = 𝐼 holds if 𝐵 is the pseudoinverse of 𝐴: 
𝐵𝐴 = 𝐴+𝐴 = (𝐴𝖳 𝐴)−1(𝐴𝖳 𝐴) = 𝐼

𝐵 = 𝐴+ = (𝐴𝖳 𝐴)−1𝐴𝖳 . (11)

𝐴+ is exact if 𝐴 has full rank, but in general, it does not, so the solution is only approxi�
mate:

𝐴𝐵 ≈ 𝐼. (12)

Geometric Interpretation. 
Basis Transition Matrix.. If in vector
space 𝑉 , there are two bases: the old one 𝒪 :
𝝎1, …, 𝝎𝑛 and the new one 𝒩 : 𝝂1, …, 𝝂𝑛,
the vectors of the new basis can be repre�
sented as linear combinations of the old ba�
sis vectors:

{{
{
{{𝝂1 = 𝛼1,1𝝎1 + … + 𝛼1,𝑛𝝎𝑛

⋮
𝝂𝑛 = 𝛼𝑛,1𝝎1 + … + 𝛼𝑛,𝑛𝝎𝑛

The coefficients 𝛼𝑠,𝑗 are the coordinates of
the new basis vectors in the coordinate sys�
tem of the old basis. These coefficients form
the basis transition matrix (by columns!):

𝐴 =

(
((
((

𝛼1,1
⋮

𝛼1,𝑛

…
⋱
…

𝛼𝑛,1
⋮

𝛼𝑛,𝑛)
))
))

This matrix transforms coordinates between
bases:

{𝝂1}𝒪 =
(
((
(𝛼1,1

⋮
𝛼1,𝑛)

))
)

𝒪

= 𝐴
(
((
(1

0
⋮)
))
)

𝒩

= 𝐴{𝝂1}𝒩

{𝒗}𝒪 = 𝐴{𝒗}𝒩, {𝒗}𝒩 = 𝐴−1{𝒗}𝒪

 Matrices 𝐴 and 𝐵 resemble transition matrices between bases:

✴ 𝐴 transforms vectors from the original basis of features 𝑓1, …, 𝑓𝑘 into a new space with
the basis of principal components 𝑝1, …, 𝑝𝑚. However, since these bases are in different
dimensional spaces, this is only an analogy.

✴ 𝐵 performs the reverse transformation, converting from the principal component basis
back to the original basis (approximately).

Since 𝐴 and 𝐵 are related by the pseudoinverse operation and perform inverse transforma�
tions, we can focus on one of the matrices. Let it be 𝐵.

The basis transition matrix stores the vectors of the new basis in the coordinates of the
old basis. As the linear map 𝐵 transforms principal components into the original features
(approximately):

𝒇 ≈ 𝐵𝒑, (13)

it acts similarly to a basis transition matrix from 𝒇 to 𝒑, storing the orthogonal basis of
principal axes in the coordinates of the original space.

The choice of matrix 𝐵 is flexible, allowing
us to impose additional constraints. For ex�
ample, we can require that 𝐵𝑇 𝐵 be diagonal
or even the identity matrix:

𝐵𝑇 𝐵 = (1
0

0
1

0
0)

(
((
(1

0
0

0
1
0)
))
) = (1

0
0
1)

Any basis consists of linearly independent, or orthogonal, vectors, meaning that 𝐵 stores
orthogonal vectors, and 𝐵𝖳 𝐵 = Λ is diagonal.

Since the choice of 𝐵 is not unique, we can use this freedom to demand that 𝐵𝖳 𝐵 be not
just diagonal Λ, but the identity matrix 𝐼 :

∃𝐵 : 𝐵𝖳 𝐵 = 𝐼, (14)

This implies that 𝐵 stores not just orthogonal vectors but an orthonormal basis of prin�
cipal components.

Risk Minimization. The objective of PCA is to minimize the restoration error. In this no�
tation, the empirical risk depends on 𝐴 and 𝐵:

𝑅 := ‖𝐹 − 𝐹‖2

= ‖𝐹𝐴𝖳 𝐵𝖳 − 𝐹‖2 → min
𝐴,𝐵

.
(15)

We can reformulate the objective in terms of the new coordinates 𝑃  and the transition
matrix 𝐵 by substituting 𝑃 = 𝐹𝐴𝖳 , which at least reduces one matrix multiplication:

𝑅 = ‖𝑃𝐵𝖳 − 𝐹‖2 → min
𝑃,𝐵

. (16)

By differentiating 𝑅 with respect to 𝑃  and 𝐵, we can find the values of 𝑃  and 𝐵 at the
extremum:



𝜕𝑅
𝜕𝑃

= 2(𝑃𝐵𝖳 − 𝐹)𝐵 = 0

⇓

𝑃 = 𝐹𝐵(𝐵𝖳 𝐵)−1

(17)

𝜕𝑅
𝜕𝐵

= 2𝑃𝖳 (𝑃𝐵𝖳 − 𝐹) = 0

⇓

𝐵𝖳 = (𝑃𝖳 𝑃)−1𝑃𝖳 𝐹

(18)

𝐵 = 𝐹𝖳 𝑃((𝑃𝖳 𝑃)−1)
𝖳 

= 𝐹𝖳 𝑃((𝑃𝖳 𝑃)𝖳 )
−1

= 𝐹𝖳 𝑃(𝑃𝖳 𝑃)−1

(19)

𝑆 = 𝑃𝖳 𝑃  is symmetric, i.e. 𝑆𝑇 = 𝑆The objective 𝑅 depends only on the product 𝑃𝐵𝑇 , which can result from multiplying
any number of different pairs of matrices:

𝑃𝐵𝖳 = 𝑃𝐼𝐵𝖳 = (𝑃 ∗𝑅)⏟
𝑃

(𝑅−1𝐵∗𝖳 )⏟⏟⏟⏟⏟
𝐵𝖳 

(20)

Earlier, we showed that 𝐵 could be chosen
to store an orthonormal basis, but this
wasn’t strictly necessary.

It can be demonstrated analytically that it
is sufficient to choose 𝑅 such that 𝐵𝑇 𝐵 is
diagonal, which is enough to ensure 𝐵𝑇 𝐵 =
𝐼 . This will determine the form of 𝐵, which
can then be interpreted as a matrix storing
an orthonormal basis.

As the proof involves boring linear algebra,
we relied on geometric intuition instead
(though formal proof is possible!).

We will use the freedom in choosing 𝑅 and let 𝑃𝖳 𝑃  and 𝐵𝖳 𝐵 be diagonal:

✴ 𝑃  stores the principal components in their respective coordinates.

✴ 𝐵 stores the orthonormal “basis” of principal components in the coordinates of the
original space, so 𝐵𝖳 𝐵 = 𝐼 .

{𝑃𝖳 𝑃 = Λ
𝐵𝖳 𝐵 = 𝐼 (21)

Now, we can further simplify the expressions for 𝑃  and 𝐵:

𝑃 = 𝐹𝐵(𝐵𝖳 𝐵)−1 = 𝐹𝐵𝐼,

𝐵 = 𝐹𝖳 𝑃(𝑃𝖳 𝑃)−1 = 𝐹𝖳 𝑃Λ−1.
(22)

Eliminate 𝑃 :

𝐵Λ = 𝐹𝖳 𝐹𝐵 (23)

This means that the columns of 𝐵 are
eigenvectors of 𝐹𝖳 𝐹 :

𝒃𝑗 ⋅ 𝜆𝑗 = (𝐹𝖳 𝐹)𝒃𝑗. (24)

Eliminate 𝐵:

𝑃Λ = 𝐹𝐹𝖳 𝑃 (25)

This means that the columns of 𝑃  are
eigenvectors of 𝐹𝐹𝖳 :

𝒑𝑗 ⋅ 𝜆𝑗 = (𝐹𝐹𝖳 )𝒑𝑗. (26)
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