
Normal distribution

Univariate. A random variable 𝜉 is said to have a normal distribution with mean 𝜇 and
variance 𝜎2 if its probability density function (pdf) is given by
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where 𝜇 is the mean and 𝜎2 is the variance of the distribution. More compactly, it can be
written as

𝜉 ∼ 𝒩(𝜇, 𝜎2) (2)

Uncorrelated multivariate. A random vector 𝝃 = (
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𝜉𝑘

) is said to have an uncorrelated

multivariate normal distribution with mean 𝝁 = (
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) and variances 𝜎2
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𝑘 if the pdf

of every random component of 𝝃 is given by
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where 𝜇𝑗 is the mean and 𝜎2
𝑗  is the variance of the 𝑗-th component of the.

All components of 𝝃 are assumed to be independent, so the joint pdf of 𝝃 is the product of
the pdfs of its components:
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Covariance matrix. All variance parameters 𝜎2
1, …, 𝜎2

𝑘 can be combined into a covariance
matrix Σ. The covariance matrix is a symmetric positive definite matrix that describes the
covariance between the components of 𝝃.
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Here, the covariance matrix is diagonal (all off-diagonal elements are zero), because we as-
sumed that the components of 𝝃 are uncorrelated, i.e., Cov[𝜉𝑖, 𝜉𝑗] = 0 for all 𝑖 ≠ 𝑗.

The pdf of the multivariate normal distribution can be written in terms of the covariance

𝑓𝝃(𝑥1, …, 𝑥𝑘) =
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The covariance matrix Σ above is a diagonal matrix, but in general, it’s a symmetric posi-
tive definite matrix that describes the covariance between the components of 𝝃:

Σ ≔
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If we substitute the non-diagonal covariance matrix Σ into the pdf, we get the general
form of the multivariate normal distribution.

Technically, each component of Σ is the covariance between the corresponding components

For a sample 𝑋 = {𝑥1, …, 𝑥ℓ} ⊂ ℝ, the vari-
ance is the average of the squared differ-
ences from the mean:

Var[𝑋] ≔ 1
ℓ

∑
ℓ

𝑖=1
(𝑥𝑖 − ̄𝑥)2.

Given another sample 𝑌 = {𝑦1, …, 𝑦ℓ} ⊂ ℝ,
the co-variance between two samples is char-
acterized by how much they vary together:

Cov[𝑋, 𝑌 ] ≔ 1
ℓ
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(𝑥𝑖 − ̄𝑥) ⋅ (𝑦𝑖 − ̄𝑦).

Both per sample variance and two samples
covariance can be combined into a covari-
ance matrix.

Σ = (Cov[𝑥, 𝑥]
Cov[𝑦, 𝑥]

Cov[𝑥, 𝑦]
Cov[𝑦, 𝑦]) = ( Var[𝑥]

Cov[𝑦, 𝑥]
Cov[𝑥, 𝑦]
Var[𝑦] ).

It will be shown below that this is equiva-
lent to the covariance matrix for a sample of
2D vectors 𝒗𝑖 = (𝑥𝑖

𝑦𝑖
) ∈ ℝ2.

 

To characterize co-variance of multiple sam-
ples

𝑋1 = {𝑥1,1, …, 𝑥1,ℓ}, …, 𝑋𝑘 = {𝑥𝑘,1, …, 𝑥𝑘,ℓ}

all together, we combine them into one sam-
ple of 𝑘-dimentional data:

𝑉 = {𝒗1, …, 𝒗ℓ}, 𝒗𝑖 =
(
((
(𝑥1,𝑖

⋮
𝑥𝑘,𝑖)

))
).

The covariance between any two samples 𝑋𝑡
and 𝑋𝑞 is

Cov[𝑋𝑡, 𝑋𝑞] ≔ 1
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(𝑥𝑡,𝑖 − ̄𝑥𝑡) ⋅ (𝑥𝑞,𝑖 − ̄𝑥𝑞).

Generally, for a sample of vectors 𝒗1, …, 𝒗ℓ ∈
ℝ𝑘:

Σ := 1
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= 𝔼[(𝒗 − ̄𝒗)(𝒗 − ̄𝒗)𝖳 ].

which resambles the variance but in multiple
dimensions.

Σ𝑖,𝑗 ≔ Cov[𝜉𝑖, 𝜉𝑗] = 𝔼[(𝜉𝑖 − 𝜇𝑖)(𝜉𝑗 − 𝜇𝑗)]. (8)



The term det Σ is the generalized variance.

Mahalanobis distance. The distance between a point 𝒙 and the distribution 𝒩(𝝁, Σ) can
be measured using the Mahalanobis distance. 

Quadratic form 𝑄(𝒙) is a scalar function of
a vector 𝒙 that can be expressed as as
weighted sum of the squares of the compo-
nents of 𝒙:

𝑄(𝒙) = ∑
𝑖,𝑗

𝑤𝑖,𝑗𝑥𝑖𝑥𝑗.

These weights can be gathered into a matrix
𝑊 , and the quadratic form can be written
as a matrix product:

𝑄(𝒙) = 𝒙𝖳 𝑊𝒙.

The premise is that the covariance matrix Σ captures the correlations between the compo-
nents of 𝝃. The Mahalanobis distance is a measure of how many standard deviations away
a point 𝒙 is from the mean 𝝁, taking into account the correlations between the compo-
nents of 𝝃.

We can define a quadratic form

𝑄(𝒙) := (𝒙 − 𝝁)𝖳 Σ−1(𝒙 − 𝝁)

= ∑
𝑖,𝑗

(𝑥𝑖 − 𝜇𝑖)(Cov[𝜉𝑖, 𝜉𝑗])
−1(𝑥𝑗 − 𝜇𝑗).

(9)

it can be interpreted
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