Normal distribution

Univariate. A random variable ξ is said to have a normal distribution with mean μ and variance σ^2 if its probability density function (pdf) is given by

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
(1)

where μ is the mean and σ^2 is the variance of the distribution. More compactly, it can be written as

$$\xi \sim \mathcal{N}(\mu, \sigma^2) \tag{2}$$

Uncorrelated multivariate. A random vector $\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_k \end{pmatrix}$ is said to have an uncorrelated multivariate normal distribution with mean $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_k \end{pmatrix}$ and variances $\sigma_1^2, ..., \sigma_k^2$ if the pdf of every random component of $\boldsymbol{\xi}$ is given by

$$f_{\xi_j}(x) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_j}{\sigma_j}\right)^2\right\}$$
(3)

where μ_j is the mean and σ_j^2 is the variance of the *j*-th component of the.

All components of $\boldsymbol{\xi}$ are assumed to be independent, so the joint pdf of $\boldsymbol{\xi}$ is the product of the pdfs of its components:

$$f_{\xi}(x_1, ..., x_k) = \prod_{i=1}^k f_{\xi_i}(x_i) = \prod_{i=1}^k \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right\}$$
(4)

Covariance matrix. All variance parameters $\sigma_1^2, ..., \sigma_k^2$ can be combined into a covariance matrix Σ . The covariance matrix is a symmetric positive definite matrix that describes the covariance between the components of $\boldsymbol{\xi}$.

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \\ & \ddots & \\ & & \sigma_k^2 \end{pmatrix}$$
(5)

Here, the covariance matrix is diagonal (all off-diagonal elements are zero), because we assumed that the components of $\boldsymbol{\xi}$ are uncorrelated, *i.e.*, $\operatorname{Cov}[\xi_i, \xi_j] = 0$ for all $i \neq j$.

The pdf of the multivariate normal distribution can be written in terms of the covariance

$$f_{\xi}(x_1, ..., x_k) = \frac{\exp\{-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\}}{\sqrt{(2\pi)^k \det \Sigma}}$$
(6)

The covariance matrix Σ above is a diagonal matrix, but in general, it's a symmetric positive definite matrix that describes the covariance between the components of $\boldsymbol{\xi}$:

$$\Sigma := \begin{pmatrix} \operatorname{Cov}[\xi_1, \xi_1] & \dots & \operatorname{Cov}[\xi_1, \xi_k] \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}[\xi_k, \xi_1] & \dots & \operatorname{Cov}[\xi_k, \xi_k] \end{pmatrix}.$$
(7)

If we substitute the non-diagonal covariance matrix Σ into the pdf, we get the general form of the multivariate normal distribution.

Technically, each component of Σ is the covariance between the corresponding components

For a sample
$$X = \{x_1, ..., x_j\} \subset \mathbb{R}$$
, the variable $X_i = \mathbb{E}\left[(\xi_i - \mu_i)(\xi_j - \mu_j)\right]$. (8)
ance is the average of the square differ- ξ_i , $\xi_j = \mathbb{E}\left[(\xi_i - \mu_i)(\xi_j - \mu_j)\right]$.

$$\operatorname{Var}[X] := \frac{1}{2} \sum_{\ell=1}^{\ell} (x_{\ell} - \overline{y})$$

The term $\det \Sigma$ is the generalized variance.

Mahalanobis distance. The distance between a point \boldsymbol{x} and the distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ can be measured using the Mahalanobis distance.

The premise is that the covariance matrix Σ captures the correlations between the components of $\boldsymbol{\xi}$. The Mahalanobis distance is a measure of how many standard deviations away a point \boldsymbol{x} is from the mean $\boldsymbol{\mu}$, taking into account the correlations between the components of $\boldsymbol{\xi}$.

We can define a quadratic form

$$\begin{split} Q(\boldsymbol{x}) &:= (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \, \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \\ &= \sum_{i,j} (x_i - \mu_i) \big(\operatorname{Cov} \big[\xi_i, \xi_j \big] \big)^{-1} \big(x_j - \mu_j \big) \end{split}$$

it can be interpreted

Quadratic form Q(x) is a scalar function of a vector x that can be expressed as as weighted sum of the squares of the components of x:

$$Q(\boldsymbol{x}) = \sum_{i,j} w_{i,j} x_i x_j.$$

These weights can be gathered into a matrix W, and the quadratic form can be written as a matrix product:

(9)

 $Q(\boldsymbol{x}) = \boldsymbol{x}^{\mathsf{T}} W \boldsymbol{x}.$