Normal distribution

Univariate. A random variable £ is said to have a normal distribution with mean y and
variance o2 if its probability density function (pdf) is given by
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where p is the mean and o2 is the variance of the distribution. More compactly, it can be

written as
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Uncorrelated multivariate. A random vector £ = ( : ) is said to have an uncorrelated
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multivariate normal distribution with mean p = ( ¢ | and variances o2, ..., Uz if the pdf
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where p; is the mean and 012. is the variance of the j-th component of the.

of every random component of £ is given by
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All components of £ are assumed to be independent, so the joint pdf of £ is the product of
the pdfs of its components:
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Covariance matrix. All variance parameters Uf, ey ai can be combined into a covariance
matrix Y. The covariance matrix is a symmetric positive definite matrix that describes the
covariance between the components of &.
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Here, the covariance matrix is diagonal (all off-diagonal elements are zero), because we as-
sumed that the components of & are uncorrelated, i.e., Cov [{i,fj] =0 for all ¢ £ j.

The pdf of the multivariate normal distribution can be written in terms of the covariance
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The covariance matrix ¥ above is a diagonal matrix, but in general, it’s a symmetric posi-
tive definite matrix that describes the covariance between the components of &:
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If we substitute the non-diagonal covariance matrix ¥ into the pdf, we get the general
form of the multivariate normal distribution.

Technically, each component of ¥ is the covariance between the corresponding components
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The term det ¥ is the generalized variance.
Mahalanobis distance. The distance between a point « and the distribution N (u, X) can
be measured using the Mahalanobis distance.

The premise is that the covariance matrix ¥ captures the correlations between the compo-
nents of £&. The Mahalanobis distance is a measure of how many standard deviations away
a point x is from the mean p, taking into account the correlations between the compo-
nents of &.

We can define a quadratic form
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it can be interpreted

Quadratic form Q(z) is a scalar function of
a vector x that can be expressed as as
weighted sum of the squares of the compo-
nents of x:
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These weights can be gathered into a matrix
W, and the quadratic form can be written
as a matrix product:

Q(z) =" Wz.
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