
Exponential Family: Canonical form (1D)

Canonical form 1. The exponential family represents a parametric class of probability dis�
tributions defined by their probability density function (pdf) or probability mass function
(pmf):

𝑓(𝜉|𝜃) ≔ 1
𝑍(𝜃)

⋅ ℎ(𝜉) ⋅ 𝑒𝜃⋅𝜉, (1)

where 𝜉 ∈ ℝ represents a value of random variable Ξ, 𝜃 ∈ ℝ is a parameter, 𝑍(𝜃) ∈ ℝ rep�
resents a parameter�dependent normalization constant, and ℎ(𝜉) ∈ ℝ is a parameter�inde�
pendent scaling function, also called the carrier measure. In short notation, 𝑌 ∼ Exp(𝜃). 

This family encompasses many common
probability distributions. Any distribution
whose pdf can be expressed in the form of
(1) belongs to the exponential family.

The equation (1) is the canonical form of the exponential family. The canonical form pro�
vides a standardized way to express all exponential and pre�exponential terms.

Partition function. To hold normalization, the term called the partition function is intro�
duced:

𝑍(𝜃) ≔ ∫ ℎ(𝜉) ⋅ 𝑒𝜃⋅𝑇 (𝜉) d𝜉 . (2)

Corresponding logarithm 𝐴(𝜃) ≔ log 𝑍(𝜃) is called the log partition function or cumulant
function.

Sufficient statistics. If the random variable Ξ does not have a linear relationship with the
parameter 𝜃, a function called sufficient statistics 𝑇 (𝜉) is introduced to make the relation�
ship linear: 

Technically, 𝑇 (𝜉) is a new random variable
𝜉′ for which (1) holds.𝑓(𝜉|𝜃) ≔ 1

𝑍(𝜃)
⋅ ℎ(𝜉) ⋅ 𝑒𝜃⋅𝑇 (𝜉), (3)

Canonical form 2. Equivalently to (3), the exponential family can be rewritten as a single
exponential function when all pre�exponential terms are gathered:

𝑓(𝜉|𝜃) ≔ 𝑒𝜃⋅𝜉−𝐴(𝜃)+𝐶(𝜉) (4)

where 𝐴(𝜃) ≔ log 𝑍(𝜃) is the log�partition (cumulant) function, and 𝐶(𝜉) ≔ log ℎ(𝜉) scales
the distribution. Both forms are canonical as they are equivalent.

Fitting parameter 𝜃. For a data points 𝑥∗ ∼ Exp(𝜃), we can estimate 𝜃 by standard ap�
proaches, e.g. by maximizing the likelihood function:

𝜃∗ = arg max
𝜃

ℓ(𝜃) = arg max
𝜃

{log ∏
𝑥∗∈𝑋ℓ

ℙ[𝑥 = 𝑥∗|𝜃]}

= arg max
𝜃

∑
𝑥∗∈𝑋ℓ

log{ 1
𝑍(𝜃)

⋅ ℎ(𝑥∗) ⋅ 𝑒𝜃⋅𝑇 (𝑥∗)}

= arg max
𝜃

∑
𝑥∗∈𝑋ℓ

{− log 𝑍(𝜃) + log ℎ(𝑥∗) + 𝜃 ⋅ 𝑇 (𝑥∗)} → max
𝜃

.

(5)

the terms log ℎ(𝑥∗) are constant and can be ignored.

Modeling. While 1D exponential family can be used to model 1D densities, relationships
between two variables 𝑥 and 𝑦 still can be modeled. If we assume that 𝑦 has an exponen�
tial family distribution 𝑦 ∼ Exp(𝜃), and joint distribution is in the form of 𝑓𝑋,𝑌 (𝑥, 𝑦|𝜃): 

Assumptions. Distributions between 𝑋
and Θ are independent (inputs do not de�
pend on the parameter), the distribution of
𝑋 is assumed uniform (data density is con�
stant); as a result, the distribution of an�
swers 𝑌  is conditioned both by the input 𝑋
and the parameter 𝜃 of the exponential fam�
ily.

𝑓𝑋,𝑌 (𝑥, 𝑦|𝜃) =
𝑓𝑋,𝑌 ,Θ(𝑥, 𝑦, 𝜃)

𝑓Θ(𝜃)
=

𝑓𝑌 (𝑦|𝑥, 𝜃) ⋅ 𝑓𝑋,Θ(𝑥, 𝜃)
𝑓Θ(𝜃)

= 𝑓𝑌 (𝑦|𝑥, 𝜃) ⋅ 𝑓𝑋(𝑥) ⋅ 𝑓Θ(𝜃)
𝑓Θ(𝜃)

= 𝑓𝑌 (𝑦|𝑥, 𝜃).
(6)

If 𝑓𝑌 (𝑦|𝑥, 𝜃) can be expressed as 𝑓𝑌 (𝑦|𝜃(𝑥)), then 𝑦 ∼ Exp(𝜃(𝑥)).



Exponential family: Canonical form (𝑛D)

Vector parameter 𝜽 ∈ ℝ𝑚. The scalar parameter 𝜃 ∈ ℝ combines with sufficient statistics
𝑇 (𝜉) ∈ ℝ to produce a scalar value 𝜃 ⋅ 𝑇 (𝜉) ∈ ℝ within the exponential function 𝑒𝜃⋅𝑇 (𝜉). 

Parameters 𝜽 are linear, i.e. they linearly
transform the random vector 𝝃 (or its suffi�
cient statistics 𝑇 (𝝃)) to produce the scalar
value.

Generalizing 𝜃 to a vector 𝜽 ∈ ℝ𝑛 requires only that the inner product ⟨𝜽, 𝑇 (𝜉)⟩ exists,
where 𝑇 (𝜉) ∈ ℝ𝑚 maps the random variable Ξ into the same space ℝ𝑚 where 𝜽 resides:

𝑒𝜃⋅𝑇 (𝜉) ⧴ 𝑒⟨𝜽,𝑇 (𝜉)⟩. (7)

Random vector 𝝃 ∈ ℝ𝑘. The generalization from scalar random variable Ξ to random vec�
tor 𝝃 ∈ ℝ𝑘 follows naturally through sufficient statistics 𝑇 : ℝ𝑘 → ℝ𝑚 that ensures the in�
ner product ⟨𝜽, 𝑇 (𝝃)⟩ exists. 

While dimensions of 𝝃 and 𝜽 need not
match, the sufficient statistics 𝑇  must create
a valid inner product ⟨𝜽, 𝑇 (𝝃)⟩.

Canonical form. A random vector 𝝃 ∈ ℝ𝑘 follows the exponential family distribution with
parameter 𝜽 ∈ ℝ𝑚 when its pdf takes the form: 

These equivalent canonical forms relate
through 𝐴(𝜽) = log 𝑍(𝜽) and 𝐶(𝝃) =
log ℎ(𝝃).

𝑓(𝝃|𝜽) ≔ 1
𝑍(𝜽)

⋅ ℎ(𝝃) ⋅ 𝑒⟨𝜽,𝑇 (𝝃)⟩

≔ exp{⟨𝜽, 𝑇 (𝝃)⟩ − 𝐴(𝜽) + 𝐶(𝝃)}.
(8)

The remaining terms generalize naturally:

✴ Partition function:

𝑍(𝜽) ≔ ∫
supp(𝒙)

ℎ(𝝃) ⋅ 𝑒⟨𝜽,𝑇 (𝝃)⟩ d𝝃, (9)

where d𝝃 = d𝜉1 … d𝜉𝑘 represents the differential volume element.

✴ Log partition function:

𝐴(𝜽) ≔ log 𝑍(𝜽). (10)

✴ Carrier measure and its logarithm must be defined for vector argument:

ℎ(𝜉) ⧴ ℎ(𝝃), 𝐶(𝜉) ⧴ 𝐶(𝝃). (11)

Modeling scalar response 𝑦 ∈ ℝ. Given a joint distribution of 𝑘�dimensional inputs 𝒙 and
scalar responses 𝑦, we can model their relationship analogous to (6): 

Note that 𝑦 is a scalar random variable,
with only the parameters being vectors: 𝑦 ∼
Exp(𝜽).

𝑓𝑋,𝑌 (𝒙, 𝑦|𝜽) = 𝑓𝑌 (𝑦|𝒙, 𝜽) (12)

For training data (𝒙∗, 𝑦∗) ∈ (𝑋, 𝑌 )ℓ, we estimate 𝜽 by maximizing:

ℓ(𝜽) = ∑
(𝒙∗,𝑦∗)∈(𝑋,𝑌 )ℓ

log 𝑓𝑌 (𝑦 = 𝑦∗|𝒙 = 𝒙∗, 𝜽) → max
𝜽

. (13)

For prediction on new data 𝒙′, we calculate the conditional expectation:

𝑦(𝒙′) = 𝔼[𝑦|𝒙 = 𝒙′, 𝜽 = 𝜽∗]. (14)

Modeling all responses 𝒚 ∈ ℝℓ. A straightforward approach collects all responses 𝑦(𝒙) for
𝒙 ∈ 𝑋ℓ into a column vector 𝒚 = (𝑦(𝒙1)  …  𝑦(𝒙ℓ))

𝖳 ∈ ℝℓ. The notation 𝒚 ∼ Exp(𝜽) indi�
cates each training example 𝑦 ∈ 𝒚 shares a common parameter 𝜽.

Vector 𝒚 can be represented as a vector of
all answers 𝑦(𝒙):

𝒚 =
(
((
(𝑦1

⋮
𝑦𝑚)

))
) =

(
((
(𝑦(𝒙1)

⋮
𝑦(𝒙𝑚))

))
).

Modeling a single vector response 𝒚 ∈ ℝ𝑚. For vector�valued responses, each 𝒚 represents
multiple outputs for a single input 𝒙 ∈ ℝ𝑘. The joint distribution follows:

𝑓𝑋,𝑌 (𝒙, 𝒚|𝜽) = 𝑓𝑌 (𝒚|𝒙, 𝜽) (15)

Different responses 𝒚 can be modeled with a shared vector 𝜽 or individual parameters:

𝒚1, …, 𝒚ℓ ∼ Exp(𝜽1), …, Exp(𝜽ℓ). (16)



Exponential family: Bernoulli distribution

Classical definition. Suppose we have a scenario with two outcomes: “success” and “fail�
ure,” represented by a binary random variable 𝜉 ∈ {0, 1}. The probability of “success”
ℙ[𝜉 = 1] is defined by a parameter 𝑝 ∈ (0..1).

In short, 𝜉 ∼ ℬ(𝑝) means that 𝜉 follows the Bernoulli distribution with parameter 𝑝. The
probability mass function (pmf) is:

𝑝(𝜉) = {𝑝 if 𝜉 = 1
1 − 𝑝 if 𝜉 = 0

= 𝑝𝜉(1 − 𝑝)1−𝜉.
(17)

The Bernoulli distribution is perhaps the simplest member of the exponential family.

Problem statement. To express the Bernoulli distribution, we need to explicitly identify
all components of the exponential family’s pdf/pmf: parameter 𝜃, sufficient statistic 𝑇 (𝜉),
partition function 𝑍(𝜃), and scaling function ℎ(𝜉).

Canonical form. Starting by taking the logarithm of the classical definition:

log 𝑝(𝜉) = log 𝑝𝜉(1 − 𝑝)1−𝜉

= 𝜉 ⋅ log 𝑝 + (1 − 𝜉) ⋅ log(1 − 𝑝)

= 𝜉 ⋅ log 𝑝
1 − 𝑝

+ log(1 − 𝑝).
(18)

Undoing the logarithm, we get: 
Our goal is to demonstrate that this us
equivalent to the canonical form (8):

𝑓(𝜉|𝜃) = 1
𝑍(𝜃)

⋅ ℎ(𝜉) ⋅ 𝑒𝜃⋅𝑇 (𝜉)

𝑝(𝜉) = exp{𝜉 ⋅ log 𝑝
1 − 𝑝

+ log(1 − 𝑝)}

= 𝑒𝜉⋅ log 𝑝
1−𝑝 ⋅ 𝑒log(1−𝑝) = 𝑒𝜉⋅ log 𝑝

1−𝑝 ⋅ (1 − 𝑝).
(19)

By comparing this with the canonical pmf (8), we can easily identify:

𝑇 (𝜉) = 𝜉, 𝜃 = log 𝑝
1 − 𝑝

, 1
𝑍(𝜃)

⋅ ℎ(𝜉) = 1 − 𝑝. (20)

Logit function. 
The term “logit” is a variation of “loga�
rithm” as it comprises the logarithm func�
tion. You can think of it as a portmanteau
of “logarithm” and “unit.”

 The parameter of the exponential family distribution Exp(𝜃) depends on
the parameter of the classical Bernoulli distribution ℬ(𝑝). This connection is established
by the logit function: 

The relation of the probability of an event 𝐴
to the probability of the complementary
event is called the odds ratio:

odd 𝐴 ≔ ℙ[𝐴]
ℙ[ ̄𝐴]

= ℙ[𝐴]
1 − ℙ[𝐴]

.

The logit function is the logarithm of the
odds ratio:

logit 𝑝 ≔ log 𝑝
1 − 𝑝

= log ℙ[«success»]
ℙ[«failure»]

,

so it computes the ratio of the probability of
success to the probability of failure.

logit 𝑝 ≔ log 𝑝
1 − 𝑝

. (21)

In other words, the canonical parameter can be easily calculated as 𝜃 = logit 𝑝. Techni�
cally, the logit function maps the probability 𝑝 ∈ (0..1) to the arbitrary real number 𝜃 ∈ ℝ
as the logarithm of 𝑝

1−𝑝  can be any real number.

Sigmoid function. Likewise, the classical probability 𝑝 ∈ (0..1) can be easily calculated
from the canonical parameter 𝜃 ∈ ℝ by applying an inverse function to the logit function:

𝑝 = logit−1 𝜃 = 𝜎(𝜃). (22)

The commonly known sigmoid function 𝜎(𝑥) = 1
1+𝑒−𝑥  is the inverse of the logit function. 

Inverse of logit. The inverse of the logit
function is the sigmoid function:

𝜃 = ln 𝑝
1 − 𝑝

𝑒𝜃(1 − 𝑝) = 𝑝

𝑝 = 𝑒𝜃

1 + 𝑒𝜃 = 1
1 + 𝑒−𝜃 ≕ 𝜎(𝜃)

Partition function. The pre�exponential term 1
𝑍(𝜃) ⋅ ℎ(𝜉) is equal to 1 − 𝑝, as we have

shown. By applying 𝑝 = 𝜎(𝜃), we can see that the pre�exponential term depends only on
the canonical parameter 𝜃, not on the input 𝜉, so

ℎ(𝜉) = 1, 1
𝑍(𝜃)

= 1 − 𝜎(𝜃). (23)

Final form. The Bernoulli distribution in canonical exponential family form is:

𝑓(𝜉|𝜃) = (1 − 𝜎(𝜃)) ⋅ 𝑒𝜃⋅𝜉. (24)



Exponential family: Normal distribution

Standard normal distribution. In the trivial case, the standard normal distribution
𝒩(𝜇 = 0, 𝜎 = 1) can be expressed as an exponential family distribution Exp(𝜃):

𝑓(𝜉|𝜃 = −1/2) = 1√
2𝜋

⋅ 𝑒−𝜉2/2, (25)

Note. The choice of 𝜃, 𝑇 (𝜉), 𝑍(𝜃), and ℎ(𝜉)
is not unique.

 where the coefficient before 𝜉2 is the canonical parameter 𝜃 = −1
2 , the sufficient statistics

are 𝑇 (𝜉) = 𝜉2, and the pre�exponential term is 1√
2𝜋 = 1

𝑍(𝜃) ⋅ ℎ(𝜉).

Non-standard normal distribution. Interestingly, the non�standard normal distribution
𝒩(𝜇, 𝜎) cannot be easily fitted into the exponential family. The pdf of the non�standard
normal distribution is:

𝑓(𝜉|𝜇, 𝜎) = 1
𝜎
√

2𝜋
exp{−(𝜉 − 𝜇)2

2𝜎2 }

= 1
𝜎
√

2𝜋
exp{− 1

2𝜎2 ⋅ 𝜉2 + 𝜇
𝜎2 ⋅ 𝜉 − 𝜇2

2𝜎2 }

= 1
𝜎
√

2𝜋
exp{− 𝜇2

2𝜎2 }
⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ(𝜉)/𝑍(𝜽)

⋅ exp{− 1
2𝜎2 ⋅ 𝜉2 + 𝜇

𝜎2 ⋅ 𝜉}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟨𝜽,𝑇 (𝜉)⟩

.

(26)

✴ The sufficient statistics and canonical parameter are both 2D vectors:

𝑇 (𝜉) = ( 𝜉
𝜉2), 𝜽 ≡ (𝜃1

𝜃2
) = ( 𝜇/𝜎2

−1/(2𝜎2)) (27)

Note. Since 𝜎2 > 0, the canonical parame�
ter 𝜃2 = −1/(2𝜎2) < 0 must be negative;
this constrains the parameter space.

✴ The parameters of the original distribution 𝜇 and 𝜎 can be expressed as:

𝜎 = √− 1
2𝜃2

= 1
√−2𝜃2

> 0, 𝜇 = 𝜃1 ⋅ 𝜎2 = − 𝜃1
2𝜃2

. (28)

✴ − log 𝑍 comes from log 1
𝑍 , also ℎ(𝜉) = 1

✴ You can check the last by substituting
𝜃1 = 𝜇

𝜎2  and 𝜃2 = − 1
2𝜎2  back into the pdf.

✴ The partition function 𝑍(𝜃1 = 𝜇/𝜎2, 𝜃2 = −1/(2𝜎2)) depends on two parameters, and
the scaling function ℎ(𝜉) = 1 is a constant, so the pre�exponential term is:

− ln 𝑍(𝜃1, 𝜃2) = − ln 𝜎 − ln
√

2𝜋 − 𝜇2

2𝜎2

= ln √−2𝜃2 − ln
√

2𝜋 + 𝜃2
1

4𝜃2

= 𝜃2
1

4𝜃2
+ ln √−𝜃2

𝜋
.

(29)

Finally, the canonical form of the non�standard normal distribution is:

𝑓(𝜉|𝜃1, 𝜃2) = exp{𝜃1 ⋅ 𝜉 − 𝜃2 ⋅ 𝜉2 + 𝜃2
1

4𝜃2
+ ln √−𝜃2

𝜋
}. (30)

Multivariate normal distribution. Further generalization is relatively straightforward; the
pdf of the multivariate normal distribution 𝒩(𝝁, 𝚺) is:

𝑓(𝝃|𝝁, 𝚺) = 1
√(2𝜋)𝑘 det 𝚺

exp{−1
2
(𝝃 − 𝝁)𝑇 𝚺−1(𝝃 − 𝝁)}, (31)

where 𝝃 ∈ ℝ𝑘 is a random vector, 𝝁 ∈ ℝ𝑘 is the mean vector, and 𝚺 ∈ ℝ𝑘×𝑘 is the covari�
ance matrix, the sufficient statistics, canonical parameters and pre�exponential term are:

𝑇 (𝝃) = ( 𝝃
𝝃𝝃𝑇 ), 𝜽1 = Σ−1𝝁, 𝜽2 = −1

2
Σ−1, 𝑍(𝜽) = √(2𝜋)𝑘 det Σ exp{1

2
𝝁𝑇 Σ−1𝝁}.(32)



Exponential family: Laplace distribution

Classical definition. The Laplace distribution arises naturally as the difference between
two independent, identically distributed exponential variables. For this reason, it is also
called the double exponential distribution.

The distribution has two parameters: 𝜇 is the location parameter (mean), and 𝑏 is the
scale parameter. Its pdf is similar to the normal distribution but has an absolute value in
the exponent instead of a square:

𝑓(𝑦|𝜇, 𝑏) = 1
2𝑏

𝑒−|𝑦−𝜇| /𝑏. (33)

This distribution is useful for modeling data with sharp peaks and heavy tails compared
to the normal distribution.

Special case. When 𝜇 = 0, the Laplace distribution can be expressed in exponential family
form:

𝑓(𝑦|𝑏) = 1
2𝑏

⋅ 𝑒−|𝑦|/𝑏

= 1
2𝑏⏟

1/𝑍(𝜃)

⋅ 𝑒
𝜃⋅𝑇(𝑦)

⏞⏞⏞⏞⏞(1/𝑏)⋅(−|𝑦|)
(34)

The canonical parameter becomes 𝜃 = 1/𝑏, the sufficient statistics 𝑇 (𝑦) = −|𝑦|, and the
partition function 𝑍(𝜃) = 2/𝜃.

General case. For 𝜇 ≠ 0, the Laplace distribution cannot be written as an exponential
family distribution because 𝑦, 𝜇 ↦ |𝑦 − 𝜇| cannot be represented as sufficient statistics
𝑇 (𝑦), which by definition must be independent of distribution parameters.

The classical Laplace distribution parameters behave differently. The parameter 𝑏 directly
relates to the canonical parameter through 𝜃 = 1

𝑏  in the exponential family form. However,
the parameter 𝜇 does not correspond to any canonical parameter, making it impossible to
express the doubly�parameterized Laplace distribution in exponential family form.

Trick 1: Shifting by 𝜇. By shifting the distribution by 𝜇 and introducing a new variable
𝑡 ≔ 𝑦 − 𝜇, the distribution of 𝑡 follows the exponential family form:

𝑓(𝑡|𝜃) = 𝜃
2

⋅ 𝑒−|𝑡| ⋅𝜃, 𝑡 ≔ 𝑦 − 𝜇. (35)

Thus, while the general Laplace distribution itself lies outside the exponential family, the
distribution of the shifted variable belongs to it.

Trick 2: Fixing 𝜇. Alternatively, fixing 𝜇 to any constant value allows defining sufficient
statistics 𝑇 (𝑦) ≔ −|𝑦 − 𝜇|, which expresses the Laplace distribution in exponential family
form:

𝑓(𝑦|𝜃) = 𝜃
2

⋅ 𝑒𝑇(𝑦)⋅𝜃, 𝑇 (𝑦) ≔ −|𝑦 − 𝜇|. (36)



Exponential family: Poisson distribution

Classical definition. The Poisson distribution models the number of events occurring
within a fixed interval of time (or space). The distribution has a single parameter 𝜆 > 0
representing the average rate of event occurrences.

The pmf of the Poisson distribution is:

𝑓(𝑘|𝜆) = 𝑒−𝜆 ⋅ 𝜆𝑘

𝑘!
, (37)

ℕ0 ≔ {0} ∪ ℕ is the set of non�negative inte�
gers.

where 𝑘 ∈ ℕ0 represents the number of events occurring in the interval. This pmf can be
rewritten in exponential family form.

Solution. To express (37) as a one�dimensional exponential family distribution:

𝑓(𝑘|𝜃) = ℎ(𝑘) ⋅ exp(𝜃 ⋅ 𝑘 − 𝐴(𝜃)), (38)

we combine all parameter�dependent terms (𝜆𝑘 and 𝑒−𝜆) from (37) into a single exponent,
and gather all parameter�independent terms (𝑘!) into the pre�exponential term:

𝑓(𝑘|𝜆) = 𝑒−𝜆 ⋅ 𝜆𝑘

𝑘!

= 1
𝑘!

⋅ exp{−𝜆 + ln 𝜆𝑘}

= 1
𝑘!

⋅ exp{𝑘 ⋅ ln 𝜆 − 𝜆}.

(39)

The relationship between classical parame�
ter 𝜆 and canonical parameter 𝜃 is given by
𝜆 = 𝑒𝜃 or equivalently 𝜃 = ln 𝜆

The log partition function 𝐴(𝜃) = 𝑒𝜃 follows
from (39) and the relationship 𝜆 = 𝑒𝜃 (see
the previous note).

Comparing terms with the canonical form yields the canonical parameter 𝜃 = ln 𝜆, the log
partition function 𝐴(𝜃) = 𝑒𝜃, and the scaling function ℎ(𝑘) = 1

𝑘! .

Mean parameter. The expectation follows directly from the derivative of the log partition
function:

𝜇 = 𝐴′(𝜃) = 𝑒𝜃, (40)

obtained through the formalism of the exponential family.

Classical approach. The same result emerges by directly calculating the expectation using
the classical pmf:

The exponential function expands as a Tay�
lor series:

𝑒𝑥 = ∑
∞

𝑡=0

𝑥𝑡

𝑡!
= 1 + 𝑥 + 𝑥2

2!
+ …

The summation index changes twice: first to
factor out 𝜆 from 𝜆𝑘, and then through the
substitution 𝑡 ≔ 𝑘 − 1.

𝔼[𝐾|𝜆] := ∑
∞

𝑘=0
𝑘 ⋅ 𝑓(𝑘|𝜆)

= ∑
∞

𝑘=0
𝑘 ⋅ 𝑒−𝜆 ⋅ 𝜆𝑘

𝑘!

= 𝑒−𝜆 ⋅ 𝜆 ⋅ ∑
∞

𝑘=1

𝜆𝑘−1

(𝑘 − 1)!

= 𝑒−𝜆 ⋅ 𝜆 ⋅ ∑
∞

𝑡=0

𝜆𝑡

𝑡!

= 𝑒−𝜆 ⋅ 𝜆 ⋅ 𝑒𝜆 = 𝜆.

(41)

As shown, since 𝜆 = 𝑒𝜃, the mean parameter 𝜇 = 𝑒𝜃 = 𝜆. This demonstrates that the mean
parameter of the exponential form directly corresponds to the classical expectation.



GLM: Cross-entropy and log-loss

Model. Logistic regression represents a special case of GLM where the binary response
variable 𝑌  follows a Bernoulli distribution:

𝑦𝑖 ∼ ℬ(𝑝), 𝑝 ≔ ℙ[𝑦𝑖 = 1] (42)

Here, 𝑝 represents the success probability in a single trial. The canonical form of the
Bernoulli distribution is:

𝑦𝑖 ∼ 𝑓(𝑦|𝜃) = 𝜎(−𝜃) ⋅ 𝑒𝜃⋅𝑦, 𝜎(𝜃) = 1
1 + 𝑒−𝜃 (43)

Starting from the general GLM form:

𝑌 ∼ 𝑓(𝑦|𝜽) = exp[𝜽 ⋅ 𝑇 (𝑦) − 𝐴(𝜽) + 𝐶(𝑦)] (44)

We can derive both cross�entropy and log�loss directly, assuming only the Bernoulli distri�
bution of 𝑌 .

Link Function. The link function 𝜓 connects the response variable’s mean 𝜇 = 𝔼[𝑌 ] to the
distribution’s canonical parameters 𝜽:

𝝁 = 𝜓(𝜽) (45)

In GLM, we assume the canonical parameters are linear:

𝜃𝑖 = 𝒙𝖳 
𝑖 𝜷, 𝜽 = 𝑋𝜷 (46)

where 𝜷 represents the linear coefficients corresponding to features in 𝒙.

For the Bernoulli distribution, the link function takes the form:

𝜓(𝜇) = log 𝜇
1 − 𝜇

= logit 𝜇 (47)

Cross-entropy Loss. We begin with the
log�likelihood function 𝑙(𝜃) for the
Bernoulli�distributed response variable 𝑌 ,
assuming 𝜃 = 𝒙𝖳 𝜷:

𝑙(𝜃) = log ∏
𝑖

𝑓(𝑦𝑖|𝜃)

= log ∏
𝑖

𝜎(−𝜃) ⋅ 𝑒𝜃⋅𝑦𝑖

= ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 𝜎(−𝜃)}

= ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 1
1 + 𝑒−(−𝜃) }

= ∑
𝑖

{𝑦𝑖 log 𝜇
1 − 𝜇

+ log 1
1 + 𝜇

1−𝜇
}

= ∑
𝑖

{𝑦𝑖 log 𝜇
1 − 𝜇

+ log 1 − 𝜇
1 − 𝜇 + 𝜇

}

= ∑
𝑖

{𝑦𝑖 log 𝜇 − 𝑦𝑖 log(1 − 𝜇) + log(1 − 𝜇)}

= ∑
𝑖

{𝑦𝑖 log 𝜇 + (1 − 𝑦𝑖) log(1 − 𝜇)}

= ∑
𝑖

{𝑦𝑖 log 𝑝 + (1 − 𝑦𝑖) log(1 − 𝑝)}

= 𝑙(𝑝(𝜷)) → max
𝜷

(48)

Log-loss. The log�loss function ℓ(𝑀) can
be derived by taking the negative log�likeli�
hood:

−𝑙(𝜃) = − ∑
𝑖

{𝜃 ⋅ 𝑦𝑖 + log 𝑒−𝜃

1 + 𝑒−𝜃 }

= ∑
𝑖 {{

{
{{− log 𝑒𝜃 + log 𝑒−𝜃

1+𝑒−𝜃 , if 𝑦 = 1
− log 𝑒−𝜃

1+𝑒−𝜃 , if 𝑦 = 0

= ∑
𝑖

{log(1 + 𝑒−𝜃), if 𝑦 = 1
log(1 + 𝑒𝜃), if 𝑦 = 0

= ∑
𝑖

log(1 + 𝑒𝜃⋅ sgn 𝑦𝑖)

= ∑
𝑖

log(1 + 𝑒⟨𝒙𝑖,𝜷⟩⋅ sgn 𝑦𝑖)

= ∑
𝑖

log(1 + 𝑒−𝑀𝑖)

= ℓ(𝑀(𝜷)) → min
𝜷

(49)

Making Predictions. To make a prediction:



𝑝(𝒙) = 𝜇(𝒙) = 𝜓(𝜃 = 𝒙 ⋅ 𝜷) = 1
1 + 𝑒𝒙⋅𝜷 (50)
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